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}(IEM 402: Advanced Physical Chemistry-III (Physical Spl.) Marks: 50 Credits: 4

Classes: 45L

Unit-1: Quantum mechanics of many electron systems-I: PG

Identical particle and Pauli’s Antisymmetry principle, Slater determinant for svstem with more
than two electrons, Eigen functions of many electron spin operator: Pure spin states, Energy
expectation value of pure spin states; Orbitals in many electron atoms: The Hartree-Fock Theory,
Koopman’s theorem, The Hatree-Fock-Roothaan method for closed cell systems, Roothaan
equation, Brillouin’s theorem.

Unit-4: Computational Chemistry-I PG

Exteded Huckel theory, CNDO formalism, INDO formalism, Basic NDDO formalism:
MNDO. AM1, PM3.

Ab Initio HF theory: Basis set: Gaussian functions, single Zeta, multiple Zita and split
valence functions, polarization and diffuse functions.

Electron correlation in MO theory: Configuration interaction: single determinant
reference, multi reference.

Unit-S: Computational Chemistry-II PG

Density Functional Theory (DFT): Philosophy. early approximations. Hohenberg-Kohn
existence theorem, Hohenberg-Kohn variational theorem, Kohn-Sham SCF
methodology, Exchange correlation functionals: Local density approximation, density
gradient and kinetic energy corrections.

Advantages and dis-advantages of DFT compare to MO theory, General performance of
DFT.

}CEM 403: Advanced Physical Chemistry-IV (Physical Spl.) Marks: 50 Credits: 4

Classes: 45L
Unit-ITI: Macromolecules: PG
Classification of polymers, kinetics of polymerization, Molecular weight of polymers, molecular
weight determination by viscosity, osmometry, light scattering, diffusion and ultracentrifugation
methods. Thermodynamics of polymer solutions. Polymer conformation.
Unit —V: Advanced electrochemistry PG
Debye Huckel theory, its modifications and extensions, mean ionic activity co-efficients, ion association,
and precise determination of dissociation constants of weak electrolytes by method of emf and
conductance measurements, ion-solvent interaction and solvation number. Non stationary processes in
electrolytic solutions, Onsager conductance equation, effect of high electric field and frequency on ion
conductance.
Overvoltage, polarography, amperometric titration. basic principles of cyclic voltammetry and
coulometry, polyelectrolyte. Mechanism of muwulti-step electrochemical reactions, hydrogen
overvoltage, thermodynamics of ideally polarized electrodes, structures of metal and
semiconductor-electrolyte junctions, fuel cell, photoelectrochemical cells.
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Let us start with the BO Hamiltonian operator for a N electron system

N Np N Ny
r
Z ‘ ZZ P ¥rer Zh<n>+22
i=1]= |T_R]| i=1 j>i |rl 11]>l|rl

Although it is obwously a bad apprommatuon to neglect the mter—electromc repulsion term, let us
assume for the moment that we have a non-interacting (NI) system.

N Zl h(r)

In a multi-electron system, for each electron we define a spin orbital, x;(x;), to be an eigenstate of the
single-particle Hamiltonian operator, h(7}).

_ [®i(r)a(o)
1) = {cbi(rj)m)

Therefore,

h(r)xi(x;) = exi(x;), with §;; = f xi(x;)x(x;) dx;
Since all the h(x) in HN! act on the single orbital dependent on x; only, the eigenfunction of H is the
product of all the single-particle spin orbitals and the corresponding eigenvalue is just the sum of their
eigenvalues.
YHE = Xi(xl))(j(xz) X ()
Therefore, with WHP, the corresponding energy becomes,
EHP =Ei+6j+"'+6k
The wave function WHP is called the Hartree product and is an example for an uncorrelated wave
function, because the probability of finding electron 1 in a volume element dx; and electron 2 in dx,
is simply the product of the individual probabilities:

1 Gen) ey | Ge) | o -+ e Ge) ey
In other words, we have factorized our wave function. However, W#” violates the anti-symmetry
principle, because it is obviously symmetric when we interchange any two electronic coordinates.
Consider (for simplicity) a two-electron system, like the hydrogen molecule, where we have two
possible PHP:

WHP (x1,%7) = Xi(xl))(j(xz)

Wi (21, %2) = i () xj (1)
These two products can be combined into a new wave function, which obeys the anti-symmetry
principle:

ey [x(x)x(X) e ()]
N i(X1)xj(x i (X)X (%1

Thus, the anti-symmetric wave function lP(xl,xz)may also be represented in the form of a
determinant:

W(xq,x7) =

BERVACANPIIED
‘IJ(prz)—ﬁ‘Xi(xz) )(j(xz)

This determinant is called the Slater determinant.

= lpSD(xsz)
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Thus, the anti-symmetric wave function
1 1

W(xy, %) = 7 (Wi — vl = NG [ Cen)xj (ez) — xi (e x (1)

may also be represented in the form of a determinant:
Wxy,x,) = i Xi(x1) Xj(xl)
V2 [xi(2)  xj(xz)
This determinant is called the Slater determinant. The Slater determinant can be generalized for a N
electron system as,

= q}SD (xlr xZ)

xi(x1) Xj(xl) ()

1 ; .
‘PSD(xl,xz,...,xN) — — XL(:xz) X](SxZ) Xk(ExZ)
xi(en) Xj(xN) o xe(ey)

The factor 1/v/N! is a normalization factor. This SD has N electrons occupying N spin orbitals
(Xi» Xj» > Xx) Without specifying which electron is in which orbital. Thus, in the Slater determinant,

xi(x1) Xj(xl) ()

1 ; .
‘PSD(xl,xz,...,xN) — — XL(:xz) X](SxZ) Xk(ExZ)
xi(en) Xj(xN) o xe(ey)

note that,
* the rows of an N-electron SD are labeled by electrons: first row (x;), second row (x;), ...,
* the columns are labeled by spin orbitals: first column (;), second column (¥;), ...
* interchanging the coordinates of two electrons corresponds to interchanging two rows of the
SD, which changes the sign of the determinant, and
* thus, the SDs meet the requirement of the antisymmetry principle,
* having two electrons occupying the same spin orbital corresponds to having two columns of
the determinant equal, which makes the determinant zero.
e Therefore, no more than one electron can occupy a spin orbital (Pauli exclusion principle).
A short-hand notation for a normalized SD, which includes the normalization constant, and only shows
the diagonal elements of the determinant,
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lp(xlle' ""xN) = |Xi(x1))(j(x2) '”Xk(xN))
If we always choose the electron labels to be in the order, x4, x5, ..., x5, then,
Lp(xlfxb ""xN) = |XLX_] Xk)
Because the interchange of any two columns changes the sign of a SD, the ordering of spin orbitals in
W(xy, X2, oy Xy) = |Xi)(j "')(k)

is important.
~ The antisymmetry property of SDs is
o X XY = = X Xm )
Let us try to work out the algebra associated with the SDs. Consider the SDs |K) = |)(L-)(j> and |L) =
|xxx1)- Let us evaluate (K|L).

1 1
(K|L) = fﬁ [X;(xﬂ)(}(xz) - X}(’Q)Xi*(xz)] ﬁ Drie e xa (e2) — 20 G ) e (2 1dxy dx,

1 * * * * * *
= Ef[)(i (x1))(j (o) xre (e xi (x2) — xi (x1))(j (e2)x0 Cep) xpe (x2) — Xj (o) xi Cez) xre () x (x2)
+ x5 (e)xi (e2)x (x)xic(x2)] dxydx,
1
-3 (5ik5jl — 61 bji — G by + 5jl5ik) = i 6j1 — 611 Sk
We have seen that a Hartree product is truly an independent-electron wavefunction since the
simultaneous probability of finding electron-1 in dx; at x4, electron-2 in dx, at x,, etc. is

W (xq, x2, ---»xN)|2 = |)(i(x1)|2dx1|)(j(x2)|2dx2 |Xk(xN)|2de
The process of antisymmetrizing a Hartree product to form a SD introduces exchange effects, so-called
because they arise from the requirement that |¥|? be invariant to the exchange of space and spin
coordinates of any two electrons. A SD incorporates exchange correlation, which means that the
motion of two electrons with parallel spins is correlated. Since the motion of electrons with opposite
spins remains uncorrelated, it is customary to refer to a single determinantal wavefunction as an
uncorrelated wavefunction.
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Consider a two-electron SD in which the spin orbitals y; and y, are occupied.
W(xy,x2) = |x1(x1)x2(x2))
If the two electrons have opposite spins and occupy different spatial orbitals,
x1(x1) = P (r)a(wq)
X2(x2) = Yo () B (w,)

then, the corresponding SD is
W(xy,xz) = % Dra e x2(x2) — x2 () xa (x2)]
and by expanding the determinant one obtains
|W)2dx,dx, = W*(xq, %)W (xq, x3)dx, dx,
= % [ra ez (c2) — x2 Ger)xa ()17 Dra (e 2 (2) — x2 () xa (x2) 1dxy dx,

1
~|WPdxydx, = > L1 ey (x2) = x2(xq)x1 (x2) [P dxy dx,

Now, since,
x1(x1) = Yy (r)a(wy)
X2(x2) = P (12) B (w7)

we have

1
|lP|2dx1dx2 = 2 |1 (r) a(w )2 () B (w2) — ¢1(rz)a(w2)¢2(r1)ﬁ(w1)|2dx1dx2
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which represents the simultaneous probability of electron-1 being in dx; and electron-2 beingin dx,.
Say, P(ry,1,)dr;dr, be the simultaneous probability of finding electron-1 in dr; at r; and electron-2
indr, atr,.

?

dr,

dry @

rz2
n

. P(ﬁ ,rp) dr dr;
£

This probability is obtained by integratihg/averaging |W|2dx,dx, over the spins of the two electrons.
P(Tl,Tz)drldT'z = f|‘p|2dx1dx2 = f|lp|2dr'1da)1d1'2dw2

Therefore, we have,
P(ry,ry)drydr,

1
= > [ (r) P2 () 12 + 11 () 12, (ry) 12 1dry dry
Thus, we have,

P(ry,rp)drydry = = [[Y1 (r) 121, (1) 12 + [, () 1219, (r) 2] drydry

N| =

The first term,
[1 ()12 [P (1) 2
is the product of the probability of finding electron-1 in dr; at r; and the probability of finding
electron-2 in dr, at r, if electron-1 occupies 1P; and electron-2 occupies ¥,. The second term has
electron-1 occupying 1, and electron-2 occupying ;. Since the electrons are indistinguishable, the
correct probability is the average of the two terms.
~ The motion of the two electrons is uncorrelated. This is particularly obvious if Y; = ¥, in which
case,
P(ry, 1) = [P (r) Pl ()1

Also, note that P(ry,1;) # 0, so that there is a finite probability of finding the two electrons with
opposite spins at the same point in space. If the two electrons have the same spin (say ) and if they
occupy different spatial orbitals as before,

X1 (1) = P1(r)B(wy)

X2(x2) = Y2 (12) B (w2)

1
W(xy,xz) = ﬁ Dea (e w2 (x2) — x2 (1) xa (x2)]

then the corresponding SD is

Thus, from
1
W(xq,x2) = ﬁ Dea (e w2 (x2) — x2 (1) x1 (x2)]
by expanding the determinant one obtains
|lp|2dx1dx2 = lI’J*(xl, xz)l'p(xl, xz)dxldxz

1
= 2 Dea (e xz (ez) — x2 (o) xa ()17 Dea Cen) 2 (x2) — X2 (1) x1 (x2)ldxp dx,

1
|‘P|2dx1dx2 = E |1 (1) x2 () — Xz(x1))(1(x2)|2dx1dx2
so that using

x1(x1) = Y1 (1) B(wq)
X2(x2) = P (12) B (w3)

we have
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1
|1P|2dx1dx2 = 2 |1 (r) B (w2 (1) B(wz2) — Y1(r2) B(w2)Y, (7'1).3(0)1)|2dx1dx2

which represents the simultaneous probability of electron-1 being in dx; and electron-2 beingin dx,.
Say, P(ry,1,)dr;dr, be the simultaneous probability of finding electron-1 in dr; at r; and electron-2

in dr, at 1. This probability is obtained by integrating/averaging |¥|?dx,dx, over the spins of the
two electrons.

P(Tl,rz)drldrz = f|Lp|2dx1dx2 = f|lp|2d7'1dw1dr2dw2
Let us evaluate

P(ry,rp)drdr, = fl‘Pldeldxz = fl‘l’lzdrlda)ldrzda)z

using
1
|¥|?dx dx, = 2 11 (r) B(w1) P2 (1) B(w2) — Y1 (1) B(w2) 2 (1) B(w1) [P dxy dx,.
1
~ P(ry,mp)drydr, = Ef|¢1(T1)ﬁ(w1)‘l’2(rz)ﬁ(wz) — 1 (1) B(w) 2 (r) B(wq) > drydrydw, dw,

1
= Ef[l/h (r)B(w )P (1) B(w3) — Y1 (1) B(w2) P2 (1) B (we)]*
[, (Tl)ﬁ(iﬂl)‘lfz () B(w2) — Y1 () B(w2), (1) B(wy)]drdr,dw, dw,
or, P(ry,1p)drydr, = Ef‘l’i(rl)ﬁ*(wl)lp;(Tz)ﬁ*(wz)lpl(ﬁ)ﬁ(wl)lpz(Tz)ﬁ(wz) dridr,dw,dw,

5 [B5B @OVIIB @ B @B 1) drydrydarydn,
5 [ EB @3 IB @ O B () ) dradrydydan,
5 [ BB V3B @ B (B () drydrydaydany
- Prm)dndn, = [ BB @V @ (OB @)Y ()B (02) drydrydo, do,
—5 [ BB @IV @B (B (1) drydrydo,de,
5 [ B @V @O B ()R 0 dradrydsdan,
+5 [ BB @DUEIB @001 IB (2B (1) drydrydo,do,

Now,

1

Ef Y1) B ()3 (12) B (w2) 1 (1) B(w1) W2 (1) B (w2) drydrydw, dw,

1
=E|1/J1(T1)|2|1/12(T2)|2d7”1d7”2fﬂ*(wﬂﬂ(wl)d‘”lfﬂ*(wz)ﬂ(wz)dwz
1
= 2 |1/J1(T1)|2|1/J2(7”2)|2d7”1d7”2

Similarly,

2 [ BB @B @B (B (1) drydrydo do,
= S WGP () Pdndr, [ @B @ day [ B B0,
= W) P ) Py
o Py ra)drydry = 2 Wby ()P (r) Py, + 5 s (r) P o) P,

1
—Ef Y1) B (w3 (1) B (W) 1 (r2) B(w2) o (r) B (wy) drydrydw, dw;
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1
—EJ Y1) B (w)P5(r) B (1)1 (1) B (w1) P2 (1) B (w2) drydrydw  dw;

Now,

1
E f Y1) B (w)P3(r2) B (w2) Y1 (12) B (w2) P2 (1) B(wq) drydrydw, dw;
1
= SBR[ B () dan [ (@), dw,
1
= E Y1) Y, (r) Y2 (r) Y, (rp)drdr,

Similarly,

1
2 f Y112 B ()5 (1) B (1)1 (1) B (w1) P2 (1) B (w2) drydrydw, dw,

1
=SB IV ()dndr, [ B (DB dan [ @), dw;
1

= 51/1; (r )Y r) Y1 ()P, () dr dry

1 1
~ P(ry,mp)drdr, = 5 |1/J1(T1)|2|1/J2(T2)|2d7"1d7"2 + E |1/J1(T2)|2|1/J2(T1)|2d7”1d7”2

1 1
) Y1) (r) Y3 ()P (rp)drdr, — 2 Y3 (r )Y, (r) Y1 ()Y () dry dr,
Thus,

1 1
P(ry,mp)drdr, = 2 |¢1(T1)|2|¢2(T2)|2drldrz + 2 |¢1(r2)|2|1[12(r1)|2dr1dr2

1 1
- Elpf (r)Y2 (r)Y 5 ()Y () dry dry, — 2 Y3 (r)Y1 (r) Y1 ()Y () dry dr,
so that,

1
P(ry,1mp) = §[|1P1(T1)|2|¢2(7"2)|2 + (1 () P [ r) 12 = (5 (r) 2 (r) W5 ()14 (1)
— P3P, r)YI ()2 (12)3]
Thus, we now have an extra term, within {--- }, that makes the probabilities correlated. This is the
exchange correlation between the electrons of parallel spin. Note that in this case P(ry,1;) = 0. Thus,
the probability of finding two electrons with parallel spins at the same point in space is zero.
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%, 0 = 4 (1)a(w) 14, = 1%, %)

%q () =4, (1) B(¥)

Xa (9= by el o 4 —%

%, b6) = 4,0 L) e e 2 L2

N,,) = | X %q -~ %5‘5---"‘»}

' w loows
K owo . of Shaliol oybitab, be have LK Wo. Of 5‘) fuwe o
-F::m-:‘ d(‘uu‘ti:n howe % be &mﬁbﬂfﬂ Queoug yl's M-'OF Si)w ovbitals

X _ ()
N = ———
Nl (2%-N)!

The Hartree-Fock (HF) Approximation
Main challenge of Quantum Chemistry: to solve the time-independent Schrdodinger equation for
molecular systems. Trivial case: H ion. The simplest antisymmetric wavefunction that can be used to
describe the ground state of an N-electron system is a single SD,

[Wo) = lx1xz - xn)
Variation principle: the best wavefunction of this functional form is the one which gives the lowest
possible energy

Eq = (WolH|W¥)

where H is the full electronic Hamiltonian. The variational flexibility in the wavefunction |¥,) =
|x1x2 - xn) is in the choice of the spin orbitals. By minimizing E, with respect to the choice of spin
orbitals, one can derive an equation, called the Hartree-Fock equation, which determines the optimal
spin orbitals. We will show that the HF equation is an eigenvalue equation of the form

F@x(x) = ex(x)
where f (i) is an effective one-electron operator, called the Fock operator. The Fock operator has the

form,
M

1 Z
) = =5V = D A4 oHr ()
2 £ Tig
vHF (i) is the average potential experienced by the ith electron due to the presence of the other
electrons. The essence of the HF approximation is to replace the complicated many-electron problem
by a one-electron in which the actual electron-electron repulsion term,

N N
>
i=1 j>i i - r]|

is treated in an average manner through the sum over the average HF potential
N

Z UHF(i)

i=1
The HF potential, v*F (i), or equivalently the field seen by the ith electron, depends on the spin
orbitals of the other electrons, that is, the Fock operator depends on its own eigenfunctions. The
procedure for solving the HF equation
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f@x(x) = ex(x)

is called the self-consistent-field (SCF) method. The basic idea of the SCF method is simple:

* By making aninitial guess at the spin orbitals, one can evaluate the average field (that is, v

seen by each electron.

* Then one can solve the eigenvalue equation f (i) x(x;) = ex(x;) for a new set of spin orbitals.

* Using these new spin orbitals, one can obtain new fields.

* This process is repeated until self-consistency is reached, that is, the fields no longer change

the spin orbitals used to construct the Fock operator are the same as its eigenfunctions.
The solution of the HF eigenvalue problem f (i) ¥ (x;) = ex(x;) yields a set of { )y, } of orthonormal HF
spin orbitals with orbital energies {¢;}. The N spin orbitals with the lowest energies are called the
occupied or hole spin orbitals.
The SD formed from these orbitals is the HF ground state wavefunction and is the best variational
approximation to the ground state of the system, of the single determinant form. The occupied/hole
spin orbitals will be henceforth labeled by the indices a, b, ¢, ... and denoted by x4, x», Xc» - The
remaining members of the set {y,} are called virtual/unoccupied/particle spin orbitals. We will
henceforth label the virtual orbitals by the indices 1, s, t, ... and denote the spin orbitals by
Xr» Xs» Xe» - In principle, there are an infinite number of solutions to the HF equation f(i)x(x;) =
ex(x;) and an infinite number of virtual spin orbitals. In practice, the HF equation f (i) y(x;) = ex(x;)
is solved by introducing a finite set of spatial basis functions
{p(), n=1,273 .., K}

The spatial parts of the spin orbitals with the a spin function can then be expanded in terms of the
known set of functions {‘Pu}- The spatial parts of the spin orbitals with the § spin function can then
be expanded in the same way. Then both these expansions are substituted in (i) y(x;) = ex(x;) to
obtain matrix eigenvalue equations for the expansion coefficients. A basis set of K spatial functions
{qbﬂ} leads to a set of 2K spin orbitals (K with a spin and K with 8 spin). This leads to a set of N
occupied spin orbitals {y, } and a complementary set of 2K — N unoccupied/virtual spin orbitals {, }.
A single SD formed from the set {¥,} is the variational HF ground state, for which we will use the
symbol ¥, or |W,).

HF)

X2k
.
L]
virtual _........_.. X
spin s
orbitals _— X
.
L ]
Xnal
iyt

L]
oogod | x,
spin  {
orbitals —_— X,
[ ]

"_*_— xz
N ——x
The 2K HF spin orbitals have been ordered according to their energy, and we have neglected possible
degeneracies. The larger and more complete the set of basis functions {qbu}, the greater is the degree
of flexibility in the expansion for the spin orbitals and the lower will be the expectation value

Eq = (Wo|H|¥,)
Larger and larger {¢#} will keep lowering E until a limit called the Hartree-Fock limit is reached. Any
finite value of K will lead to an energy somewhat above the HF limit.
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The Minimal Basis H, Model
This is a model system visualized in light of the familiar LCAO-MO description. Each H atom has a 1s
AO and as the two atoms approach, Mos are formed as a linear combination of AOs (LCAO). The first
AO, ¢4, is centered on atom 1 at R;. The value of ¢; at a point r is ¢p; (), or, since its value depends
on the distance from its origin, we sometimes write ¢; = ¢, (r — R;). The second AO is centered on
atom 2 at R,, thatis ¢, = ¢,(r — R,). The exact 1s orbital of a H atom centered at R has the form
¢(r —R) = (&3 /m)/2e~¢IrRI
where &, the orbital exponent, has a value 1.0. This is a case of a Slater type orbital (STO). However,
we will be concerned mostly with the Gaussian type orbitals (GTOs) since the GTOs lead to simpler
integral evaluations than STOs. The 1s GTO has the form
¢(r — R) = 2a/m)*/ *e=ar =R’
where «a is the Gaussian orbital exponent.

?

r- Rz

h

®
For the present, we need not be concerned with the particular form of the 1s AOs. The two AOs ¢,
and ¢, can be assumed to be normalized, but they are not orthogonal. They will overlap, such that
the overlap integral is

S12 = f‘ﬁ(’")(ﬁz(’”) dr
The overlap will depend on the distance Ry, = |R; — R,|, such that,
Si2 = 1when Ry, = 0and S;; = 0 when Ry, = @
From the two localized AOs, ¢; and ¢,, one can form, by linear combination, two delocalized MOs.
The symmetric combination leads to a bonding MO of gerade symmetry (that is, it is symmetric with
respect to inversion about the point centered between the nuclei)

1
Y1 = ——= (1 + ¢2)
V2 +512)
The antisymmetric combination leads to a antibonding MO of ungerade symmetry (that is, it is
antisymmetric with respect to inversion about the point centered between the nuclei)

Y, = \/ﬁ(% — ¢2)

How are 1, and Y, related to each other? We note that,

WY1ly) = 20 +5, )f(¢1 + $3) (1 + Pp) dr
= m [(1ld1) +{P2lP2) + (P1ld2) + (P2lP1)]
= 2015 [1+14+25,]=1
In the same manner, (,|,) = 1. However,
1
Wilb) = s Jz —— @i+ 0@, -9 dr
12 12
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1
~APelr) = —2[1 —1-=5,+S;,]=0
4(1-55,)

Thus, ¥4 and ¥, form an orthonormal set. The above procedure is the simplest example of the general

technique of expanding a set of spatial MOs in a set of known spatial basis functions
K

Pil) = D G ()
u=1
To obtain the exact MOs for H, one would need an infinite number of terms in such an expansion.
Using only two basis functions for H, is an example of a minimal basis set and the obvious choice for
the two functions ¢p; and ¢, is the 1s AOs of the toms. The correct linear combinations for this simple
choice are determined by symmetry, and one need not solve the HF equations. The MOs 1), and i,
in

1

1
/21 m(¢1 + @) and ¥, m (1 — ¢2)

are the HF spatial orbitals in the space spanned by ¢, and ¢,. Given the two spatial orbitals y); and
,, we can form four spin orbitals

x1(x) = P (Na(w)

X2(x) = Y1 (1) B(w)

x3(x) = P (r)a(w)

Xa(x) = P, (r)B(w)
The orbital energies associated with these spin orbitals can be obtained only by explicitly considering
the HF operator. However, as might be expected, y; and y, are degenerate and have the lower energy
corresponding to the bonding situation. Similarly, y3 and y, are also degenerate having a higher
energy corresponding to an antibonding situation. The HF ground state in this model is the single
determinant,

[Wo) = |x1x2)

X3 Xq X3 Xa —_—
|¥,) = - 2

X, —K *—x:  x, f ; X, _'_l_w.
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Excited Determinants
The HF procedure produces a set {x;} of 2K spin orbitals. The HF ground state,
|Wo) = lxax2 - XaXp -+ Xn)
is the best (in a variational sense) approximation to the ground state. |¥,,) has a single determinantal
form. However, |¥,) is only one of the many determinants that could be formed from 2K > N spin
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orbitals. How many possible single determinants can be formed from 2K spin orbitals and N
electrons?

(3K = (2K)!
N! (2K — N)!

|W,) is just one of them. A convenient way of describing the determinants other than |W¥,) is to
consider the HF ground state |W,) = |x1x2 *** XaXp --* Xn) tO be a reference state. We classify the
other possible determinants by how they differ from the reference state |¥,). For example, we may
state which occupied/hole spin orbitals of the set {),} in |Wo) = |x1.X2 " XaXp = Xn) have been
replaced by which virtual/unoccupied/particle spin orbitals of the set {,.}. These other determinants
are representations of the approximate excited states of the system. These other determinants when
linearly combined with the HF ground state determinant |¥,) can be seen to be a more accurate
description of the ground state or any excited state of the system. A singly excited determinant is one
in which an electron, which occupied y, in the HF ground state |W,) = |x1x2 *** XaXp *** Xn), has been
promoted to a virtual x,.,

1Wa) = [xixz = Xrkp -~ Xn)
A doubly excited determinant is one in which the electrons have been excited from y, and y; in the
HF ground state |Wy) = |x1X2 *** XaXp *** Xn), to the virtual orbitals y, and y,

[Wap) = lxaxz = XrXs Xn)
All the C2K determinants can thus be classified as either the HF ground state or singly, doubly, triply,
quadruply, ... N-tuply excited states. The importance of these determinants as approximate
representations of the true states of the system diminishes in the above order. While the excited
determinants are not accurate representations of the excited states of the system, they are important
as N-electron basis functions for an expansion of the exact N-electron states of the system. All the
C3K determinants can thus be classified as either the HF ground state or singly, doubly, triply,
quadruply, ... N-tuply excited states. The importance of these determinants as approximate
representations of the true states of the system diminishes in the above order. While the excited
determinants are not accurate representations of the excited states of the system, they are important
as N-electron basis functions for an expansion of the exact N-electron states of the system.

. Xox Py X2|<
S __‘_i_ X,
—_ X, r
o >
] Xnal - Xy
aa e e e o 0 o) PSRRI
—— — x,
|¥9) : v ) :
]—*—- Xy Xp
—— X, - Xa
+ X2 -_+ x:
——— X, —— X,

Form of the Exact Wave Function and Configuration Interaction

We consider the use of these excited determinants as N-electron basis functions. Suppose we have a
complete set of functions {y;(x)}. Any function ®(x;) of a single variable can then be exactly
expanded as,

O() = ) aini(n)

L
where a; is an expansion coefficient. How can we expand a function of two variables ® (x4, x,) in an
analogous way? If we think of x, as being held fixed, then we can expand ®(x;,x,) as
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Dy, x2) = ) @ ()iCx)

i

In the expansion
Dy, x2) = ) @ ()iCx)

l
the expansion coefficients are now functions of x,. Since a;(x;) is a function of a single variable, it
can be expanded in the complete set {y;} as

a;(xz) = Z bij x;(x2)
Jj
Thus, we have,

D(r1,x2) = ) by 10ty ()
ij

If, however, we require ® to be antisymmetric,
D(x1,%7) = —P(x3, %)
then, b;; = —b;; and b;; = 0, or

‘D(xl'xz) - ZZ bU [Xl(xl))(] (xz) X} (xl)XL(xz)] \/—Z bU |X1X]

i j>i 1<Jj
Thus, an arbitrary antisymmetric function of the two variables can be exactly expanded in terms of all
unique determinants formed from a complete set of one-variable functions {;(x)}. This argument is
readily extended to more than two variables, so that the exact wavefunction for the ground and
excited states of our N-electron problem can be written as a linear combination of all possible N-
electron SDs formed from a complete set of spin orbitals {);}. Since all possible determinants can be
described by reference to the HF determinant, we can write the exact wavefunction for any state of
the system as,
|¢>—qm%>+25%vwv+zi PIWE) + > it |wist) +

a<b a<b<c
r<s r<s<t
Thus, the infinite set of N-electron determinants

(1)} = {I%o), 1W2), 1W55), [Wast), ...}
is a complete set for the expansion of any N-electron wavefunction. The exact energies of the ground
and excited states of the system are the eigenvalues of the Hamiltonian matrix, that is, the matrix with
elements (lPi|H|‘Pj) formed from the complete set {|¥;)}. Since every |¥;) can be defined by
specifying a configuration of spin orbitals from which it is formed, this procedure is called
configuration interaction (Cl). The lowest eigenvalue of the Hamiltonian matrix, denoted by &,
calculated variationally as £, = (®|H|®), is the exact non-relativistic ground state energy of the
system within the BO approximation. The difference between the exact non-relativistic ground state
energy £y and the energy in the HF limit Ej is called the correlation energy, Ecorrelation:
Ecorrelation = €9 — Eg where £y = (®|H|®) and Ey = (¥ |H|Wy)

since the motion of electrons with opposite spins is not correlated within the HF approximation.
Unfortunately, the above procedure for the complete solution to many-electron problem cannot be
implemented in practice, because one cannot handle infinite basis sets. If we work with a finite set of
spin orbitals {y;|i = 1, 2, 3, ..., 2K}, then the C,%K determinants formed from these spin orbitals do
not form a complete N-electron basis. However, diagonalizing the finite Hamiltonian matrix formed
from these C3K determinants lead to solutions that are exact within the one-electron subspace
spanned by the 2K spin orbitals, or, equivalently, within the N-electron subspace spanned by the C3X
determinants. This procedure is called the full Cl (FCI). Even for relatively small systems and minimal
basis sets, the number of determinants that must be included in a FCI calculation is extremely large.
To illustrate how large a FCl calculation can be even with the minimal basis, let us consider the case
of benzene in the minimal basis.
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A minimal basis set for benzene consists of 72 spin orbitals (2K = 72). [one 1s AO for each H atom,
one 1s, one 2s and three 2p for each C atom (five AOs per C atom); this makes a total of 36 spatial
AOs in the whole molecule; thus, there are 72 spin AOs.] There are a total of 42 electrons (N = 42).
The size of the FCI matrix:

72!
2K _ -1 % 1020
Cy 221301 1.643 x 10

For singly excited determinants an electron can jump from any of the y, spin orbitals (there are N of
them) to any of the y,. spin orbitals (there are 2K — N of them).

. There are N(2K —N) =30 x 42 = 1260 singly excited determinants. For doubly excited

determinants there are N(NT_I) pairs x,Xxp spin orbitals and (ZK_N)(Zw

N(N_l)(ZK_4N)(2K_N_1) = 374535 possible doubly excited determinants. Similarly, there

are 186435200 possible triply excited determinants, and so on. Let us illustrate these ideas with the
minimal basis H, model. There are (2K = 4) spin orbitals

x1(x) = P (Na(w)

X2(x) =, (1)B(w)

x3(x) =P (Na(w)

Xa(x) =, (r)B(w)
Since N =2, we can form C3X =41/(2!2!) = 6 unique determinants. The HF ground state
determinant is [Wy) = |x1x2) = |1/)1l/31> = |1 1). The singly excited determinants are

pairs of y;,xs spin orbitals.

~ There are

W) =121)
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There is only one doubly excited determinant,
|¥72) = 122) = lxaa) = |935)
Within the space spanned by the minimal basis set, the exact wavefunction will be a linear
combination of these six determinants. The HF ground state |¥,) has two electrons in a g symmetric
orbital and is of g symmetry (PR P=ED). The doubly excited determinant |‘Pl324) has two electrons
in an u orbital and hence is also of g symmetry (©QE&=@). However, the singly excited
determinants have one electron in a g symmetric orbital and one in a u symmetric orbital, so that the
overall symmetry is u (PQREOS=8). The exact ground state wavefunction of the minimal basis H,,
|®D,), like the HF approximation to it, |¥,), is of g symmetry. Therefore, only the determinants of g
symmetry can appear in the expansion for |®,), so that, we have
|Pg) = colWo) + 013§|q]1324)

The exact value of the coefficients ¢, and ¢ in the exact wavefunction |®,) and the value of the
exact energy (®,|H|®,) can be determined by diagonalizing the FCl matrix. The FCl matrix is a 2 X 2
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Hamiltonian matrix in the basis spanned by {|¥,)} and |‘l’13§) The FCI Hamiltonian matrix for this
system will be,

. <<%|H|%> (%IHILPE;*))
—\(

Wi H[Wo) (Wi |H[¥iF)
To proceed any further with this problem, we need to be able to evaluate the matrix elements.
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The FCI Hamiltonian matrix for the minimal basis H, system will be,

_ ( (PolH|Wo)  (Wo|H|¥Fs) >

(WESIH[ o) (WES|H|w3)

To proceed any further with this problem, we need to be able to evaluate the matrix elements.
Operator and Matrix Elements
Given an operator O and two N-electron determinants |K) and |L), our problem is to evaluate (K|O|L).
Minimal Basis H, Matrix Elements
Let us evaluate the matrix elements that appear in H, that is, (W, |H|W,), (Yi5|H|®ES), (Wo|H|W35) and
(W3 |H|®,). The Hamiltonian,

1, Zy 1, Zy 1 1
H=(-2v2 —Z— +(-2v2 —Z— +—=h(1) +h(2) +—
2 —iT14 2 —i 124 T12 T12
where h(i), i = 1, 2 is the core Hamiltonian for electron i, describing its KE and PE in the field of the nuclei

(the core). We define the one-body portion of H as O; = h(1) + h(2). Similarly, the two-body portion of H
is defined as 0, = rl'zl. Therefore,

1
H =h(1) + h(2) +r_= 0;+0,
12
so that, any matrix element, (K|H|L) = (K|0; + O,|L) = (K|04|L) + (K|0,|L), for any |K) and |L).

(‘P0|H|q’0) = (LP0|01 + 02“’0) = (1p0|01|q10) + (1p0|02|q10>
so that,

(Wl HIWo) = (WolR(D W) + (o [R(D)IWo) + (ol 7= )
For the other three integrals in the Hamiltonian matrix,
( (WolHIWo)  (Wo|H|¥i2) >
(W37 |H[%o) (Wi [H[¥iZ)
similar expressions can be written. For the other three integrals in the Hamiltonian matrix, (V35 |H|¥37),

(Wo|H|W37) and (WiF|H|W,) similar expressions can be written. Let us first consider the matrix element
(Wo|01|W¥y), which from h(1) + h(2) = 0, may be expressed as

1 *
(Wol R(D) W) = fdx1dx2 [ﬁ{)ﬁ(xﬂ)(z(xz) - Xz(x1))(1(x2)}]

1
X hro) [ 7= b (ear) — e ()|

1
= Ef dxqdxy [x1 (1) xz () h () xa () x2 (2) + x5 () x1 (x2) () x2 (x4 X1 (x2)

— x1 () xz () h(r) x2 (e xa (x2) — x5 () x1 (x2) R () x1 (g ) x2 (x2)]
Thus, we have

1 1
(Wolh(D|Wy) = Ef dxydxy x1 () x2 () h(r)xa () x2 (x2) + Ef dx,dxy x5 (xq)x1 (2 )h(r) x2 (1) x1 (x2)

1 1
=5 [ dmdre G ROV e ) = 5 [ drd, 15 Gedx GG G2 ()

Now,
1 1
2 | dridn xRN GR0) = 5 [ du R ) [ dr 2z 0e 6

1
-2 f docy x5 Ce () xa (o)

Similarly,
1 1
2 | drid 1 ex G GOD ) = 5 [ do BRI [ dr xiton 62

1
= Ef dxq x5 (c)h(r)x2 (1)
Again,
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1 1
7 | drdx G exEIREIR @R 0 = 5 [ do i COREIIE) | drxs 6o G =0

In the same manner

1
E.f dxydx; x5 (1) x1 () h(r) x1 (1) x2(x2) = 0

1 1
DI = 5 [ i iRt ) + 5 [ i GeDRGx )

In an identical manner,

1 1
(Wolh(2)|Wy) = E.f dxy x3(x)h(r)x2(xq) + Ef dxq x1(x)h(r)x(x1),
so that,
(WolO1[Wo) = (Yol R(1) W) + (WolR(2)|Wp)
or, (Wo|01|Wp) = fdx1 x1(x)h(r)x (x1) + f dxq x3(x1)h(r) x2(x1)

The integrals in the above expression are one-electron integrals, that is, the integration is over the
coordinates of a single electron. The dummy variables of integration are, by convention, chosen to be the
coordinates of electron-1. Introducing the following notation for the one-electron integrals involving spin
orbitals,

(ilhljy = (xi|hlx;) = fdxl xi (e h(r) x; (1)

Therefore, using the notation,
(il = Gl = [ dxnxi GomGx G

the integral,
(WolO11Wg) = (WolR(1)[Wo) + (o |h(2)|Wo)
becomes,
(WolO1[Wo) = (1]h[1) + (2|R|2)
Let us now evaluate the integral (W0, |¥).

1 *
(WolO,|Wy) = f dx,dx, [ﬁ{)ﬁ(xﬂ)(z(xz) - )(z(x1))(1(xz)}]
1

h TGRS RCNPACHY]

1
= Ef dx,dx, [Xik(xl))(;(xz)rle)(ﬂxﬂ)(z (x2) + X;(xl)lik(xz)rﬁle (1)1 (x2)

— x1 o)z )izt 22 () xa (0c2) — x5 () s ()it o (o) 2 ()]
Since, 11, = 151, we can interchange the dummy variables of integration in the second term of the above
expression and show that it is equal to the first term. Similarly, the third and fourth terms are equal.
(WolO,|Wo) = f dxidx; Xf(xl))(;(xz)”'le)(l(xl))(z(xz) - f dxidx; Xik(xl)X;(xz)rﬁle(xl))(1(x2)
The integrals in the above expression are two-electron integrals, that is, the integration is over the 8 space
and spin coordinates of two electrons (why 8?). Therefore, using the notation,
(ijlkl) = (Xi)(j|)(k)(l> = fdx1dx2 X;(x1))(;(x2)r1_21)(k(x1))(1(xz),

for

(WolO2|Wo) = J dxydoxy x1 (1) x5 ()i 00 () x2 () — f dxydaxy x1(x0) x5 ()12 X2 (1) 31 (2)
we have,
(WolO2|Wo) = (12|12) — (12]21)
~ The HF ground state E; energy is,
Eq = (WolH|Wy) = (WolO1 + 0;|W5) = (Wo|O01|Wo) + (W5l O, ¥y)
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General Rules for Matrix Elements

It is fairly easy to evaluate matrix elements between two-electron SDs. The N-electron case is more
complicated. We present a set of rules (which will derive) to evaluate these matrix elements. There are two
types of operators in Quantum Chemistry. The first type of operator is a sum of the one-electron operators,

0, = Z h(i)
i=1

where h(i) is any operator involving the ith electron only. These operators represent dynamic variables that
depend only on the position or momentum of the electron in question, independent of the position or
momentum of other electrons. Examples are: operators for the kinetic energy and operators for the
attraction of an electron to a nucleus, etc. The second type of operator is a sum of the two-electron operators,

0, = ZZv(i,j) = Zv(i,j)

i=1j>i i<j
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where v(i, j) is an operator that depends on the position (or momentum) of both the ith and jth electron.
The Coulomb interaction between two electrons v(i,j) = rl-}l is such an operator. The summation in the
above expression is over all unique pairs of electrons. The rules for evaluating the matrix element (K|O|L)
between the determinants |K) and |L) depend on

* whether the operator O is a sum of the one-electron operators (0;) or a sum of the two-electron

operators (0;), and

* the degree to which the two determinants |K) and |L) differ.
We can distinguish three cases:
Case-I: When the two determinants |K) and |L) are identical. Therefore, the matrix element is a diagonal
matrix element, (K|O|K). We choose the determinant to be,

|K) = |"'Xm)(n )
Case-Il: When the two determinants |K) and |L) differ by one spin orbital, x;, in |K) being replaced by y,, in
|L).
IK) = | Xmdn 1 LY = | dp2n ")
Case-lll: When the two determinants |K) and |L) differ by two spin orbitals, x,, and x,, in |K) being replaced
by xp and x4 in [L).
|K) = |"'Xan )Ly = |"'Xp)(q )
When the two determinants differ by three or more spin orbitals, the matrix element is always zero.
Rules for the matrix elements for
N
0, = Z h(i)
i=1

N
KIOLIK) = > (mlhlm)
m=1

Case-I: |[K) = | XmXn ")

Case-ll: [K) = | xmxn = ) IL) = |- xpxn =)
(K1041|L) = {m|h|p)

Case-lll: [K) = |-+ ¥mXn = W ILY = |- xpxq =)
(K1041L) =0

N N
— -1
i=1 j>i

Rules for the matrix elements for

Case-l: IK) = I"'Xm)(n ) NN
1
(K|0,1K) = 5 Z Z[(mnlmn) — (mn|nm)]

=1n=1
Case-ll: [K) = |-+ ¥mxn = L ILY = |- xpxn +*)
N

(K10aIL) = ) [(mnlpn) - (mnlnp)]

n=1

Case-lll: |[K) = I"'Xm)(n <)Ly = |"'Xp)(q )
(K|0,|L) = (mn|pq) — (mn|qp)

To use the rules, the two determinants must first be in maximum coincidence. Consider, for example, a matrix
element between |¥;) and |W¥,), where,

|'¥;) = |abcd)

|¥2) = |crds)
At first glance, it might appear that the two determinants differ in all 4 columns. But, by interchanging
columns of |¥,) and keeping track of the sign, we have,

|W,) = |crds) = —|crsd) = |srcd)
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Now, |¥,) = |abcd) and |¥,) = [srcd) are in maximum coincidence. They differ in two columns, and we
can use the rules obtained in Case-3. We realize that,

IK) =W ILy=|¥,),m=a,n=b;p=s;q=Tr
From the rules, it immediately follows that,

(P1101|W) = 0; (W1]0,|W;) = (ab|sr) — (ab|rs)
Using the rules, we can immediately write down the expression for the energy of a single determinant |K),
that is,

(KIHIK) = (K10, + 0,]K) = Z<m|h|m>+222<mn|mn> (mnjm)]

m=1n=
Matrix elements with the HF ground state for one -electron operators
N

0, = Z h(i)
i=1

Case — I: (W,|0,|¥y) = Z(alhla)

a=1
Case — II: (Wy|04|¥]) = (a|h|r)
Case — III: (Wy|04|¥]3) =0
Matrix elements with the HF ground state for two-electron operators

N N
0, = 171
i=1 ]
1 N N
Case — I: (W,]0,|W,) = EZ Z[(ablab) _ (ablba)]
1b=

Case — II: (Wy|O,|¥E) = Z[(ablrb) — (ab|br)]

Case — III: (W,|0,|¥, IS,) (ablrs) — {ab|sr)
-~ The HF ground state energy is

Eo = Z<a|h|a> +3 Z Zuablab) ~ (ablba)]

a=1b=1
If |K) = |x1.x2x3), let us evaluate the mtegral (K|H|K), by using the rules for matrix elements.

Now,

N N
1
(KIHIK) = Z“"'h'm”zz > mnlmn) = (mnfm)]

m=1n =1

Z(mlhlm)+i Z [(mn|mn) — (mn|nm)]

o (KIHIK) = (LIRI1) + (21R12) + (3|RI3) + (12]12) — (12]21) + (13]13) — (13|31)
+(23]23) — (23]32)

N
0, = Z h(i)
i=1

N
KIOyIK) = > (mlhlm)

m=1

Rules for the matrix elements for

Case-l: IK) = I"'Xm)(n"')

Case-ll: [K) = | mxn =+ ) IL) = |- XpXn -++)
(K[04]L) = (m|h|p)
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Case-lll: [K) = |-+ ¥mxn = W ILY = |- xpxq =)
(K1041L) = 0

N N
0= ), ) i

i=1 j>i

N
Z Z[(mnlmn) — (mn|nm)]

N
=1n=1
N

Rules for the matrix elements for

Case-l: |K) = |"'Xm)(n"')

(K10,|K) =

N =

Case-ll: [K) = | Xmin -+ ) IL) = |- Xpxn )

(KI0,IL) = ) [(mnlpn) - (mnlnp)]

n=1
Case-lll: [K) = |-+ Xmxn = ) IL) = |- xpxq =)
(K|0,|L) = (mn|pq) — (mn|qp)

SECOND QUANTIZATION

Antisymmetry principle: an axiom of QM quite apart from the Schrodinger equation. This principle is satisfied
by the use of Slater determinants and linear combinations of such determinants for the wavefunctions. Can
we satisfy the antisymmetry principle without invoking the Slater determinants? Second quantization: a
theoretical idea in which the antisymmetry property of the wavefunction gets transferred onto the algebraic
properties of certain operators. Second quantization introduces no new physics. It is an elegant way of
treating many-electron systems. This approach shifts much of the emphasis from the N-electron
wavefunction to the one- and two-electron integrals, (i|h|j) and (ij|kl). Second quantization approach
begins with the definitions of creation and annihilation operators.

CREATION AND ANNIHILATION OPERATORS
For a spin orbital y; we associate a creation operator, a;r. We define alT by its action on an arbitrary SD,
| Xk - x1) as
) = |y.
a; X - x1) = 1xixe - x0)
alT creates an electron in the spin orbital y;. The order in which two creation operators are applied to a
determinant is crucial. Consider,
azraﬂ)(k X)) = aleij X)) = |Xi)(j)(k e X1)
On the other hand,
alallxe - x) = & lixic —x0 = [xjxix0e - x0) = =|xixjxe - x0)
where we have used the antisymmetry property of the SDs.
(ajaj + a;aj)l)(k wx)=0
| xk .- X1) is an arbitrary determinant,
alTa]T + a]Ta;r =0
so that,
L o
{ai'aj} =0

where we have used the notation for the anticommutator of two operators aj and a]T. Since

afal = —ala}
we can interchange the order of two creation operators provided we change the sign. If i = j, we have,
afa! = —ala} =

which states that we cannot create two electrons in the same spin orbital y; (Pauli exclusion principle).

aIaIU(zXa) = aI|X1X2X3) = |xixax2x3) =0
In general,
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allxe ~x) =0, ifi € {k, .., 1},
that is, we cannot create an electron in a spin orbital y; is there is one already there.
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Let us now introduce the annlhllatlon operator, a;, which is the adjoint of the creation operator, a , that is,

(af) = a;. In analogy with q; MXe 1) = Wi - x1)» @; is defined as a;lxixx - x1) = |xi - x0)- So, a;
annihilates/destroys an electron in y;. The annihilation operator can only act on a determinant if the spin
orbital, which will disappear, is immediately to the left. If a spin orbital is not in the proper position, it must
be placed there by interchanging the columns of the determinant. For example,

ailxexixi) = —ailxexixi) = ailxixexy) = Lxexn)
Why is the annihilation operator defined as the adjoint of the creation operator? Consider the determinant

|K) = |)(in)
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Clearly,

IK) = af|x))

The adjoint of |[K) = a”)(j) is,

K1 = (1@l = (xila
since, for an operator 0, if O|a) = |b), then, (a|0T = (b|. Multiplying (K| = ()(j|(azr)Jr = (x;|a; onthe right
by |K), we have,

(KIK) = (x;]a:|K)

Since, (K|K) = 1 = (x;|x;), our theory is consistent when

aK) = a;|xix;) = |x;)
in agreement with the definition a;|x; xx --- x1) = | X« --- x;) of the annihilation operator. (K| = ()(j|(azr)Jr =
()(j|ai shows that a; acts like a creation operator if it operates on a determinant to the left. Similarly, a;r acts
like an annihilation operator if it operates to the left. For example, the adjoint of a;|K) = ai|)(i)(j) = |)(j> is

(Klaj = ()(j | To obtain the anti-commutation relation satisfied by annihilation operators we take the adjoint
of

alal +afal =0={a],af}.

We recall that,

(AB)t = BtAt
so that,

aja; + a;a; = 0 = {a;, a;}.
Since,
aiaj = —ajai

we can interchange the order of two annihilation operators provided we change the sign. If i = j, we have

a;a; = —a;a; = 0

which states that we cannot destroy an electron twice. A consequence of this is that we cannot remove an
electron from a spin orbital y;, if it is not already there,

ail)(k Xl> = O, ifi e {k, ey l}

How do we interchange creation and annihilation operators? Consider the operator aiazr + azrai acting on
an arbitrary determinant acting on an arbitrary determinant, |y, ... x;). If x; is not occupied in |y ... ;), then
(aia;L + ag—ai)l)(k X)) = aiaﬂ)(k X0+ a?ail)(k X)) = aiaﬂ)(k w XY = il xixe - x0)

(aia? + a?ai)l)(k w X0 = e x0)

However, if y; is occupied in |y ... x;), then
LT T . — 4.4t . Tt . N .
(@a] +afay)lxic - xi 200 = @] i o X o 20) + @ @il oo Xi o 20) = @l aglxie o xi o 20)
= —alailxi - Xic - 20) = =] | Xie o 20) = =i o Xk - 20)

(@] + af @) e xi o x0) = i o Xi o 11)
Therefore, in both the cases,

(aal + afa)lxx - x1) = 1xk - x.) (when x; is not occupied) and
(aia;r + azrai)l)(k v Xi - X1) = Xk - Xi - X1) (When y; is occupied),
we recover the same determinant.
caqial +ala;=1= {a- aJr}
AL G = L= G
Finally, we consider aTai + aiafr lxk - x1), when i+ j. aiafr + aTai Xk - x1) = aTail)(k wxn +
j j j j j
al-a}LI)(k ... X1) is non-zero only if y; appears and x; does not in |y ... x;). Otherwise, we obtain zero
e either because a}L tries to create an electron that is already there,

* ora,; tries to destroy an electron that is not there.
However, even when i € {k, ..., [} and j & {k, ..., [}, we obtain zero for the antisymmetry.

(aia]T + a}ai)lxk e Xi e X)) = —(aia;r + a;rai)l)(l- e Xk = X1)
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or, (aiaJT + a}ai)lxk X X)) = —al-a;rl)(i Xk e XL — a;ral-l)(i e Xk o X1

or, (aia]T + a}ai)lxk e Xi e X)) = —ai|)(j)(i e Xk X1) — a;rl...)(k e X1)
Therefore, from,

(a:af + afa)lxic 21 - 20) = =il 20 o Xic - 20) = & Lo X oo 0)
we have,

(aiaf + af a)lxic 21 - x0) = @iy - X0 - 20) = X X0 200

or, (aiaJT + a}ai)lxk wXi XD =X X X)) = X X ) =0
Thus, we have,

aia;r + a}ai =0= {ai, a;r]
Let us now combine a;a + aja; = 1 = {a; al} and aia;r + a}ai =0={a;, a;r} to yield

t T, = — t
a;a; +aja; = 6;; = {ai, aj}
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We have derived three crucial anticommutation relationships of the creation-annihilation operators:
(a) Between two creation operators:
alTa]T + a}LaQL =0= {azr, a;r}
(b) Between two annihilation operators:
aja; + a;a; = 0 = {a;, a;}
(c) Between a creation and an annihilation operator:
aia]T + a;ai =6 = {ai, a;r}
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These three anticommutators contain aII the properties of Slater determinants. To define a SD in the
S The vacuum state represents the state of

general,

_l. -l- .....

alal - al 153 = o+ 1)
The relation,

alal - al 153 = o+ 1)

is the second-quantized representation of a SIater determinant (SD). Any result that can be obtained using
the properties of determinants can also be proved using only the algebraic properties of creation and
annihilation operators. Say we have the determinants,

IL) = Lxex) = ak T|::::z>
Ordinarily, we can evaluate the overlap between |K) and |L) by
* expanding out the determinants,
* integrating over the space and spin coordinates of the two electrons, and
e using the orthonormality relation of spin orbitals.
Let us evaluate the overlap by using the formalism of second quantization. Since the adjoint of |K) =
|)(i)(j) = aTaTIIIZ) is

we have

The general strategy for evaluating such matrix eIements is to move, using the anticommutation relations,
the annihilation operators to the right until they operate directly on the vacuum state. We begin with a;, and

note that a;a) + afa; = 8y = {a; al}, so that aal = 8y — ala;. Therefore we have
(KlL) = (i.iajq; akal Tliny = (i.ila; (6 — aka )al [i5)
~(K|L) = lk(f::la]al [iF)y — (Iﬁffla]aka a?lﬁﬁﬁf?)
To continue,
* wemove g to the right in the first term, and
* keep moving a; to the right in the second term.
(KlL) lk(:f:ﬁl( al aj)lﬁﬁﬁﬁﬁ Iﬁﬁﬁlaj (611 al a; )|Iﬁ:

~(K|L) = lkdﬂ(ﬁﬁﬁﬁﬁlﬁﬁﬁ) ll(::laj |::)
Finally, we move a; to the right using the suitable anticommutator to get

(KIL) =
or, (KlL) =

iy = 1, we have,

(KIL) = 6 6ju — 6 ji

Second Quantized Operators and Their Matrix Elements
*  We can represent determinants by using creation and annihilation operators; these operators obey
a set of anticommutation relations and vacuum state.
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* We have found a representation of a many-electron wavefunction that satisfies the requirement of
the antisymmetry principle, but which can be manipulated without any knowledge of the properties
of determinants.

To be able to develop the entire theory of many-electron systems without using determinants, we must
express the many-particle operators, O; and O,, in terms of creation and annihilation operators.
In the first quantization, the one-electron operators are written as

N
0, = Z h(i)
i=1

where the summation runs over all the N electrons in the system. Since each term in O involves a single
electron, this operator gives a vanishing matrix element whenever the SDs differ in more than one pair of
spin orbitals. The second quantization analogue of O, therefore has the structure,

0, = ) (ilhljala
ij
-l.

since the excitation operators a; a; shift a single electron in a wavefunction. The summation is over all pairs
of spin orbitals to secure the highest possible flexibility.
In the first quantization, the two-electron operators are written as

N N 1 N N
0:= ) ) 17 =30, )"
i=1 j>i i=1j=1
where the summations run over all the N electrons in the system. The operator O, gives non-vanishing matrix
elements between SDs
¢ if the determinants contain at least two electrons, and
e if they differ in the occupations of at most two pair of electrons.

The second quantized representation of a two-electron operator therefore has the form

ISt ot
0, = EZ(L]Ikl) a; a; a a
ijkl
The annihilation operators appear to the right of the creation operators in order to ensure that 0, gives zero
when it works on a wavefunction with less than two electrons. To demonstrate that the second quantization
is equivalent to our previous development based on the SDs, we calculate the energy of the HF ground state
[Wo) = X1 XaXp - Xn) Using the second quantization. For the sum of one-electron operators, we have,

(Wol0s]¥o) = D (ilhlj) (¥olafa; %)
ij
Since both a; and a? are trying to destroy an electron (q; to the right, and azr to the left), the indices i and j
must belong to the set {a, b, ...} (the set of occupied orbitals). Therefore, we have,
(WolO4|Wo) = Z(a|h|b) (q;0|a:flab|q10)
ab
Now, using the relation, a(‘;ab =64y — abaz, to move a:; to the right, we have,
(‘Polalabl‘l’o) = (Wol6ap — abaZI‘l’o) = Gap{WolWo) — (Lp0|aba2|q10)
The term (‘Polabajll‘{'o) is zero since a:rl attempts to create an electron in y,, which is already occupied in
|[Wy). Since, (W, |Wy) = 1, we finally have,

(%104} = ) (allb) (¥olafay|¥o) = > (alhlb) 6a = ) (alhla)
ab ab a

This is in agreement with our previous result.
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For the sum of two-electron operators, we have,

1.
(910 1Wo) = 5 > (if1Kl) (Yol o] aray )
ijkl
Since both a; and a;, and alT and a]T are trying to destroy two electrons (a; and ay, to the right, anda;r and

a]T to the left), the indices i, j, k, [ must belong to the set {a, b, ...} (the set of occupied orbitals).
Thus, we have,

(¥ol0,1%0) = 3 > (abled) (olalaaqacl¥y)
abcd
Thus, our strategy, as before, is to move a,‘; and a;; to the right in (‘Pola:;a;adaclll’o) until they operate on
[Wo).
(‘I’olaZaZadaCI‘l’o) = (q10|a2(5bd - adaZ)acquo)
or, (‘PolaZaZadaCI‘Po> = 5bd(lp0|a2ac|lp0) - <‘Po|a2adalac|‘l’o)
or, (WolafafagaclWo) = 8pa(Woldac — acal|¥o) — (Wolakaa(8pe — acaf)Wo)
or, (WolafafaqgaclWo) = 8padac(Wol¥o) — SpalWolacal|Wo) — (¥olafaa(Spe — acay)|¥o)
The term, (‘Polaca,‘;llpo) = 0, since a:; acts on an already occupied y, in |¥,). Also, since, (¥,|¥,) = 1, we
have,
(Wolalafagac|¥o) = pabac — (Polataa(8pe — acal)|¥o)
or, (¥olafafaaacl¥o) = Spadac — Spc(WolabaalWo) + (Wolalagacal|wo)
The term, (‘Polaladacazl‘l’o) = 0, since a;r acts on an already occupied yp, in |¥p).
= (Wolakaagac|Wo) = 8padac = Spe(WolataalWo) = 8pabac — Opc(WPolSaa — aaaf|¥o)
or, (WolafafaaaclWo) = Spabac — SpcSaa(WolWo) + Spe(Wolagag|¥o)
The term, (‘Poladajll‘{'o) = 0, since a:; acts on an already occupied y, in |¥,). Also, since, (Wy|¥,) = 1, we
have,
(WolatalagacWo) = pabac — Spebaa
Thus,

1 1
(ol051%) = 5 ) (abled) (¥olafafagacl¥o) = 5 " (ablcd) [Spabac — Opedaal
abcd abcd
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that is, we have two terms. Hence, from,

1
(0]05]¥o) =5 D" (abled) [8padac — Seaal
abcd

we write,

1 1
(0105 Wo) = 5 > (abled) 8yabc =5 ) (abled) pebaa
abcd abcd
We set ¢ = a and d = b in the first term to get {(ab|ab). We set c = b and d = a in the second term to get

(ab|ba).
1 1 1
- (9]0,Wy) = 5 > (ablab) — 5 Y (ablba) = 5 ) [{ablab) — (ablba)]
ab ab ab

This too is in agreement with our previous result.

1
. By = (¥o|H|Wo) = ) (alhla) +5 ) [(ablab) — (ablba)]
a ab
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