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Let us start with the BO Hamiltonian operator for a 𝑁 electron system, 
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Although it is obviously a bad approximation to neglect the inter-electronic repulsion term, let us 
assume for the moment that we have a non-interacting (NI) system. 

𝐻𝑁𝐼 =∑ℎ(𝑟𝑖)

𝑁

𝑖=1

 

In a multi-electron system, for each electron we define a spin orbital, 𝜒𝑖(𝑥𝑗), to be an eigenstate of the 

single-particle Hamiltonian operator, ℎ(𝑟𝑗). 

𝜒𝑖(𝑥𝑗) = {
Φ𝑖(𝑟𝑗)𝛼(𝜎)

Φ𝑖(𝑟𝑗)𝛽(𝜎)
 

Therefore, 

ℎ(𝑟𝑗)𝜒𝑖(𝑥𝑗) = 𝜖𝑖𝜒𝑖(𝑥𝑗),  with 𝛿𝑖𝑗 = ∫𝜒𝑖(𝑥𝑗)𝜒𝑗(𝑥𝑗) 𝑑𝑥𝑗 

Since all the ℎ(𝑥) in 𝐻𝑁𝐼 act on the single orbital dependent on 𝑥𝑖 only, the eigenfunction of 𝐻 is the 
product of all the single-particle spin orbitals and the corresponding eigenvalue is just the sum of their 
eigenvalues. 

Ψ𝐻𝑃 = 𝜒𝑖(𝑥1)𝜒𝑗(𝑥2)⋯𝜒𝑘(𝑥𝑁) 

Therefore, with Ψ𝐻𝑃, the corresponding energy becomes, 
𝐸𝐻𝑃 = 𝜖𝑖 + 𝜖𝑗 +⋯+ 𝜖𝑘 

The wave function Ψ𝐻𝑃 is called the Hartree product and is an example for an uncorrelated wave 
function, because the probability of finding electron 1 in a volume element 𝑑𝑥1 and electron 2 in 𝑑𝑥2 
is simply the product of the individual probabilities: 

|𝜒𝑖(𝑥1)|
2𝑑𝑥1|𝜒𝑗(𝑥2)|

2
𝑑𝑥2⋯|𝜒𝑘(𝑥𝑁)|

2𝑑𝑥𝑁 

In other words, we have factorized our wave function. However, Ψ𝐻𝑃 violates the anti-symmetry 
principle, because it is obviously symmetric when we interchange any two electronic coordinates. 
Consider (for simplicity) a two-electron system, like the hydrogen molecule, where we have two 
possible Ψ𝐻𝑃: 

Ψ12
𝐻𝑃(𝑥1, 𝑥2) = 𝜒𝑖(𝑥1)𝜒𝑗(𝑥2) 

Ψ21
𝐻𝑃(𝑥1, 𝑥2) = 𝜒𝑖(𝑥2)𝜒𝑗(𝑥1) 

These two products can be combined into a new wave function, which obeys the anti-symmetry 
principle: 

Ψ(𝑥1, 𝑥2) =
1

√2
[Ψ12

𝐻𝑃 −Ψ21
𝐻𝑃] =

1

√2
[𝜒𝑖(𝑥1)𝜒𝑗(𝑥2) − 𝜒𝑖(𝑥2)𝜒𝑗(𝑥1)] 

Thus, the anti-symmetric wave function Ψ(𝑥1, 𝑥2)may also be represented in the form of a 
determinant: 

Ψ(𝑥1, 𝑥2) =
1

√2
|
𝜒𝑖(𝑥1) 𝜒𝑗(𝑥1)

𝜒𝑖(𝑥2) 𝜒𝑗(𝑥2)
| = ΨSD(𝑥1, 𝑥2) 

This determinant is called the Slater determinant. 
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Thus, the anti-symmetric wave function 

Ψ(𝑥1, 𝑥2) =
1

√2
[Ψ12

𝐻𝑃 −Ψ21
𝐻𝑃] =

1

√2
[𝜒𝑖(𝑥1)𝜒𝑗(𝑥2) − 𝜒𝑖(𝑥2)𝜒𝑗(𝑥1)] 

may also be represented in the form of a determinant: 

Ψ(𝑥1, 𝑥2) =
1

√2
|
𝜒𝑖(𝑥1) 𝜒𝑗(𝑥1)

𝜒𝑖(𝑥2) 𝜒𝑗(𝑥2)
| = ΨSD(𝑥1, 𝑥2) 

This determinant is called the Slater determinant. The Slater determinant can be generalized for a 𝑁 
electron system as, 

ΨSD(𝑥1, 𝑥2, … , 𝑥𝑁) =
1

√𝑁!
||

𝜒𝑖(𝑥1) 𝜒𝑗(𝑥1) ⋯ 𝜒𝑘(𝑥1)

𝜒𝑖(𝑥2) 𝜒𝑗(𝑥2) ⋯ 𝜒𝑘(𝑥2)

⋮ ⋮ ⋱ ⋮
𝜒𝑖(𝑥𝑁) 𝜒𝑗(𝑥𝑁) ⋯ 𝜒𝑘(𝑥𝑁)

|| 

The factor 1 √𝑁!⁄  is a normalization factor. This SD has 𝑁 electrons occupying 𝑁 spin orbitals 
(𝜒𝑖 , 𝜒𝑗 , … , 𝜒𝑘) without specifying which electron is in which orbital. Thus, in the Slater determinant, 

ΨSD(𝑥1, 𝑥2, … , 𝑥𝑁) =
1

√𝑁!
||

𝜒𝑖(𝑥1) 𝜒𝑗(𝑥1) ⋯ 𝜒𝑘(𝑥1)

𝜒𝑖(𝑥2) 𝜒𝑗(𝑥2) ⋯ 𝜒𝑘(𝑥2)

⋮ ⋮ ⋱ ⋮
𝜒𝑖(𝑥𝑁) 𝜒𝑗(𝑥𝑁) ⋯ 𝜒𝑘(𝑥𝑁)

|| 

note that, 
• the rows of an 𝑁-electron SD are labeled by electrons: first row (𝑥1), second row (𝑥2), …, 
• the columns are labeled by spin orbitals: first column (𝜒𝑖), second column (𝜒𝑗), … 

• interchanging the coordinates of two electrons corresponds to interchanging two rows of the 
SD, which changes the sign of the determinant, and 

• thus, the SDs meet the requirement of the antisymmetry principle, 
• having two electrons occupying the same spin orbital corresponds to having two columns of 

the determinant equal, which makes the determinant zero. 
• Therefore, no more than one electron can occupy a spin orbital (Pauli exclusion principle). 

A short-hand notation for a normalized SD, which includes the normalization constant, and only shows 
the diagonal elements of the determinant, 
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Ψ(𝑥1, 𝑥2, … , 𝑥𝑁) = |𝜒𝑖(𝑥1)𝜒𝑗(𝑥2)⋯𝜒𝑘(𝑥𝑁)⟩ 

If we always choose the electron labels to be in the order, 𝑥1, 𝑥2, … , 𝑥𝑁, then, 

Ψ(𝑥1, 𝑥2, … , 𝑥𝑁) = |𝜒𝑖𝜒𝑗 ⋯𝜒𝑘⟩ 

Because the interchange of any two columns changes the sign of a SD, the ordering of spin orbitals in 

Ψ(𝑥1, 𝑥2, … , 𝑥𝑁) = |𝜒𝑖𝜒𝑗 ⋯𝜒𝑘⟩ 

is important. 
∴ The antisymmetry property of SDs is 

|⋯𝜒𝑚⋯𝜒𝑛⋯⟩ = −|⋯𝜒𝑛⋯𝜒𝑚⋯⟩ 
Let us try to work out the algebra associated with the SDs. Consider the SDs |𝐾⟩ = |𝜒𝑖𝜒𝑗⟩ and |𝐿⟩ =
|𝜒𝑘𝜒𝑙⟩. Let us evaluate ⟨𝐾|𝐿⟩. 

⟨𝐾|𝐿⟩ = ∫
1

√2
[𝜒𝑖

∗(𝑥1)𝜒𝑗
∗(𝑥2) − 𝜒𝑗

∗(𝑥1)𝜒𝑖
∗(𝑥2)]

1

√2
[𝜒𝑘(𝑥1)𝜒𝑙(𝑥2) − 𝜒𝑙(𝑥1)𝜒𝑘(𝑥2)]𝑑𝑥1𝑑𝑥2 

=
1

2
∫[𝜒𝑖

∗(𝑥1)𝜒𝑗
∗(𝑥2)𝜒𝑘(𝑥1)𝜒𝑙(𝑥2) − 𝜒𝑖

∗(𝑥1)𝜒𝑗
∗(𝑥2)𝜒𝑙(𝑥1)𝜒𝑘(𝑥2) − 𝜒𝑗

∗(𝑥1)𝜒𝑖
∗(𝑥2)𝜒𝑘(𝑥1)𝜒𝑙(𝑥2)

+ 𝜒𝑗
∗(𝑥1)𝜒𝑖

∗(𝑥2)𝜒𝑙(𝑥1)𝜒𝑘(𝑥2)] 𝑑𝑥1𝑑𝑥2 

=
1

2
(𝛿𝑖𝑘𝛿𝑗𝑙 − 𝛿𝑖𝑙𝛿𝑗𝑘 − 𝛿𝑗𝑘𝛿𝑖𝑙 + 𝛿𝑗𝑙𝛿𝑖𝑘) = 𝛿𝑖𝑘𝛿𝑗𝑙 − 𝛿𝑖𝑙𝛿𝑗𝑘 . 

We have seen that a Hartree product is truly an independent-electron wavefunction since the 
simultaneous probability of finding electron-1 in 𝑑𝑥1 at 𝑥1, electron-2 in 𝑑𝑥2 at 𝑥2, etc. is 

|Ψ(𝑥1, 𝑥2, … , 𝑥𝑁)|
2 = |𝜒𝑖(𝑥1)|

2𝑑𝑥1|𝜒𝑗(𝑥2)|
2
𝑑𝑥2⋯|𝜒𝑘(𝑥𝑁)|

2𝑑𝑥𝑁 

The process of antisymmetrizing a Hartree product to form a SD introduces exchange effects, so-called 
because they arise from the requirement that |Ψ|2 be invariant to the exchange of space and spin 
coordinates of any two electrons. A SD incorporates exchange correlation, which means that the 
motion of two electrons with parallel spins is correlated. Since the motion of electrons with opposite 
spins remains uncorrelated, it is customary to refer to a single determinantal wavefunction as an 
uncorrelated wavefunction. 
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Consider a two-electron SD in which the spin orbitals 𝜒1 and 𝜒2 are occupied. 

Ψ(𝑥1, 𝑥2) = |𝜒1(𝑥1)𝜒2(𝑥2)⟩ 
If the two electrons have opposite spins and occupy different spatial orbitals, 

𝜒1(𝑥1) = 𝜓1(𝑟1)𝛼(𝜔1) 
𝜒2(𝑥2) = 𝜓2(𝑟2)𝛽(𝜔2) 

then, the corresponding SD is  

Ψ(𝑥1, 𝑥2) =
1

√2
[𝜒1(𝑥1)𝜒2(𝑥2) − 𝜒2(𝑥1)𝜒1(𝑥2)] 

and by expanding the determinant one obtains 
|Ψ|2𝑑𝑥1𝑑𝑥2 = Ψ∗(𝑥1, 𝑥2)Ψ(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2 

=
1

2
[𝜒1(𝑥1)𝜒2(𝑥2) − 𝜒2(𝑥1)𝜒1(𝑥2)]

∗[𝜒1(𝑥1)𝜒2(𝑥2) − 𝜒2(𝑥1)𝜒1(𝑥2)]𝑑𝑥1𝑑𝑥2 

∴ |Ψ|2𝑑𝑥1𝑑𝑥2 =
1

2
|𝜒1(𝑥1)𝜒2(𝑥2) − 𝜒2(𝑥1)𝜒1(𝑥2)|

2𝑑𝑥1𝑑𝑥2 

Now, since, 
𝜒1(𝑥1) = 𝜓1(𝑟1)𝛼(𝜔1) 
𝜒2(𝑥2) = 𝜓2(𝑟2)𝛽(𝜔2) 

we have 

|Ψ|2𝑑𝑥1𝑑𝑥2 =
1

2
|𝜓1(𝑟1)𝛼(𝜔1)𝜓2(𝑟2)𝛽(𝜔2) − 𝜓1(𝑟2)𝛼(𝜔2)𝜓2(𝑟1)𝛽(𝜔1)|

2𝑑𝑥1𝑑𝑥2 
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which represents the simultaneous probability of electron-1 being in 𝑑𝑥1 and electron-2 being in 𝑑𝑥2. 
Say, 𝑃(𝑟1, 𝑟2)𝑑𝑟1𝑑𝑟2 be the simultaneous probability of finding electron-1 in 𝑑𝑟1 at 𝑟1 and electron-2 
in 𝑑𝑟2 at 𝑟2. 

 
This probability is obtained by integrating/averaging |Ψ|2𝑑𝑥1𝑑𝑥2 over the spins of the two electrons. 

𝑃(𝑟1, 𝑟2)𝑑𝑟1𝑑𝑟2 = ∫|Ψ|2𝑑𝑥1𝑑𝑥2 = ∫|Ψ|2𝑑𝑟1𝑑𝜔1𝑑𝑟2𝑑𝜔2 

Therefore, we have, 
𝑃(𝑟1, 𝑟2)𝑑𝑟1𝑑𝑟2 

=
1

2
[|𝜓1(𝑟1)|

2|𝜓2(𝑟2)|
2 + |𝜓1(𝑟2)|

2|𝜓2(𝑟1)|
2]𝑑𝑟1𝑑𝑟2 

Thus, we have, 

𝑃(𝑟1, 𝑟2)𝑑𝑟1𝑑𝑟2 =
1

2
[|𝜓1(𝑟1)|

2|𝜓2(𝑟2)|
2 + |𝜓1(𝑟2)|

2|𝜓2(𝑟1)|
2]𝑑𝑟1𝑑𝑟2 

The first term, 
|𝜓1(𝑟1)|

2|𝜓2(𝑟2)|
2 

is the product of the probability of finding electron-1 in 𝑑𝑟1 at 𝑟1 and the probability of finding 
electron-2 in 𝑑𝑟2 at 𝑟2 if electron-1 occupies 𝜓1 and electron-2 occupies 𝜓2. The second term has 
electron-1 occupying 𝜓2 and electron-2 occupying 𝜓1. Since the electrons are indistinguishable, the 
correct probability is the average of the two terms.  
∴ The motion of the two electrons is uncorrelated. This is particularly obvious if 𝜓1 = 𝜓2, in which 
case, 

𝑃(𝑟1, 𝑟2) = |𝜓1(𝑟1)|
2|𝜓2(𝑟2)|

2 
Also, note that 𝑃(𝑟1, 𝑟1) ≠ 0, so that there is a finite probability of finding the two electrons with 
opposite spins at the same point in space. If the two electrons have the same spin (say 𝛽) and if they 
occupy different spatial orbitals as before, 

𝜒1(𝑥1) = 𝜓1(𝑟1)𝛽(𝜔1) 
𝜒2(𝑥2) = 𝜓2(𝑟2)𝛽(𝜔2) 

then the corresponding SD is  

Ψ(𝑥1, 𝑥2) =
1

√2
[𝜒1(𝑥1)𝜒2(𝑥2) − 𝜒2(𝑥1)𝜒1(𝑥2)] 

Thus, from  

Ψ(𝑥1, 𝑥2) =
1

√2
[𝜒1(𝑥1)𝜒2(𝑥2) − 𝜒2(𝑥1)𝜒1(𝑥2)] 

by expanding the determinant one obtains 
|Ψ|2𝑑𝑥1𝑑𝑥2 = Ψ∗(𝑥1, 𝑥2)Ψ(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2 

=
1

2
[𝜒1(𝑥1)𝜒2(𝑥2) − 𝜒2(𝑥1)𝜒1(𝑥2)]

∗[𝜒1(𝑥1)𝜒2(𝑥2) − 𝜒2(𝑥1)𝜒1(𝑥2)]𝑑𝑥1𝑑𝑥2 

∴ |Ψ|2𝑑𝑥1𝑑𝑥2 =
1

2
|𝜒1(𝑥1)𝜒2(𝑥2) − 𝜒2(𝑥1)𝜒1(𝑥2)|

2𝑑𝑥1𝑑𝑥2 

so that using  
𝜒1(𝑥1) = 𝜓1(𝑟1)𝛽(𝜔1) 
𝜒2(𝑥2) = 𝜓2(𝑟2)𝛽(𝜔2) 

we have 
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|Ψ|2𝑑𝑥1𝑑𝑥2 =
1

2
|𝜓1(𝑟1)𝛽(𝜔1)𝜓2(𝑟2)𝛽(𝜔2) − 𝜓1(𝑟2)𝛽(𝜔2)𝜓2(𝑟1)𝛽(𝜔1)|

2𝑑𝑥1𝑑𝑥2 

which represents the simultaneous probability of electron-1 being in 𝑑𝑥1 and electron-2 being in 𝑑𝑥2. 
Say, 𝑃(𝑟1, 𝑟2)𝑑𝑟1𝑑𝑟2 be the simultaneous probability of finding electron-1 in 𝑑𝑟1 at 𝑟1 and electron-2 
in 𝑑𝑟2 at 𝑟2. This probability is obtained by integrating/averaging |Ψ|2𝑑𝑥1𝑑𝑥2 over the spins of the 
two electrons. 

𝑃(𝑟1, 𝑟2)𝑑𝑟1𝑑𝑟2 = ∫|Ψ|2𝑑𝑥1𝑑𝑥2 = ∫|Ψ|2𝑑𝑟1𝑑𝜔1𝑑𝑟2𝑑𝜔2 

Let us evaluate  

𝑃(𝑟1, 𝑟2)𝑑𝑟1𝑑𝑟2 = ∫|Ψ|2𝑑𝑥1𝑑𝑥2 = ∫|Ψ|2𝑑𝑟1𝑑𝜔1𝑑𝑟2𝑑𝜔2 

using 

|Ψ|2𝑑𝑥1𝑑𝑥2 =
1

2
|𝜓1(𝑟1)𝛽(𝜔1)𝜓2(𝑟2)𝛽(𝜔2) − 𝜓1(𝑟2)𝛽(𝜔2)𝜓2(𝑟1)𝛽(𝜔1)|

2𝑑𝑥1𝑑𝑥2. 

∴ 𝑃(𝑟1, 𝑟2)𝑑𝑟1𝑑𝑟2 =
1

2
∫|𝜓1(𝑟1)𝛽(𝜔1)𝜓2(𝑟2)𝛽(𝜔2) − 𝜓1(𝑟2)𝛽(𝜔2)𝜓2(𝑟1)𝛽(𝜔1)|

2𝑑𝑟1𝑑𝑟2𝑑𝜔1𝑑𝜔2 

=
1

2
∫[𝜓1(𝑟1)𝛽(𝜔1)𝜓2(𝑟2)𝛽(𝜔2) − 𝜓1(𝑟2)𝛽(𝜔2)𝜓2(𝑟1)𝛽(𝜔1)]

∗ 

[𝜓1(𝑟1)𝛽(𝜔1)𝜓2(𝑟2)𝛽(𝜔2) − 𝜓1(𝑟2)𝛽(𝜔2)𝜓2(𝑟1)𝛽(𝜔1)]𝑑𝑟1𝑑𝑟2𝑑𝜔1𝑑𝜔2 

or, 𝑃(𝑟1, 𝑟2)𝑑𝑟1𝑑𝑟2 =
1

2
∫𝜓1

∗(𝑟1)𝛽
∗(𝜔1)𝜓2

∗(𝑟2)𝛽
∗(𝜔2)𝜓1(𝑟1)𝛽(𝜔1)𝜓2(𝑟2)𝛽(𝜔2) 𝑑𝑟1𝑑𝑟2𝑑𝜔1𝑑𝜔2 

−
1

2
∫𝜓1

∗(𝑟1)𝛽
∗(𝜔1)𝜓2

∗(𝑟2)𝛽
∗(𝜔2)𝜓1(𝑟2)𝛽(𝜔2)𝜓2(𝑟1)𝛽(𝜔1) 𝑑𝑟1𝑑𝑟2𝑑𝜔1𝑑𝜔2 

−
1

2
∫𝜓1

∗(𝑟2)𝛽
∗(𝜔2)𝜓2

∗(𝑟1)𝛽
∗(𝜔1)𝜓1(𝑟1)𝛽(𝜔1)𝜓2(𝑟2)𝛽(𝜔2) 𝑑𝑟1𝑑𝑟2𝑑𝜔1𝑑𝜔2 

+
1

2
∫𝜓1

∗(𝑟2)𝛽
∗(𝜔2)𝜓2

∗(𝑟1)𝛽
∗(𝜔1)𝜓1(𝑟2)𝛽(𝜔2)𝜓2(𝑟1)𝛽(𝜔1) 𝑑𝑟1𝑑𝑟2𝑑𝜔1𝑑𝜔2 

∴ 𝑃(𝑟1, 𝑟2)𝑑𝑟1𝑑𝑟2 =
1

2
∫𝜓1

∗(𝑟1)𝛽
∗(𝜔1)𝜓2

∗(𝑟2)𝛽
∗(𝜔2)𝜓1(𝑟1)𝛽(𝜔1)𝜓2(𝑟2)𝛽(𝜔2) 𝑑𝑟1𝑑𝑟2𝑑𝜔1𝑑𝜔2 

−
1

2
∫𝜓1

∗(𝑟1)𝛽
∗(𝜔1)𝜓2

∗(𝑟2)𝛽
∗(𝜔2)𝜓1(𝑟2)𝛽(𝜔2)𝜓2(𝑟1)𝛽(𝜔1) 𝑑𝑟1𝑑𝑟2𝑑𝜔1𝑑𝜔2 

−
1

2
∫𝜓1

∗(𝑟2)𝛽
∗(𝜔2)𝜓2

∗(𝑟1)𝛽
∗(𝜔1)𝜓1(𝑟1)𝛽(𝜔1)𝜓2(𝑟2)𝛽(𝜔2) 𝑑𝑟1𝑑𝑟2𝑑𝜔1𝑑𝜔2 

+
1

2
∫𝜓1

∗(𝑟2)𝛽
∗(𝜔2)𝜓2

∗(𝑟1)𝛽
∗(𝜔1)𝜓1(𝑟2)𝛽(𝜔2)𝜓2(𝑟1)𝛽(𝜔1) 𝑑𝑟1𝑑𝑟2𝑑𝜔1𝑑𝜔2 

Now, 
1

2
∫𝜓1

∗(𝑟1)𝛽
∗(𝜔1)𝜓2

∗(𝑟2)𝛽
∗(𝜔2)𝜓1(𝑟1)𝛽(𝜔1)𝜓2(𝑟2)𝛽(𝜔2) 𝑑𝑟1𝑑𝑟2𝑑𝜔1𝑑𝜔2 

=
1

2
|𝜓1(𝑟1)|

2|𝜓2(𝑟2)|
2𝑑𝑟1𝑑𝑟2∫𝛽∗(𝜔1)𝛽(𝜔1)𝑑𝜔1∫𝛽∗(𝜔2)𝛽(𝜔2)𝑑𝜔2 

=
1

2
|𝜓1(𝑟1)|

2|𝜓2(𝑟2)|
2𝑑𝑟1𝑑𝑟2 

Similarly, 
1

2
∫𝜓1

∗(𝑟2)𝛽
∗(𝜔2)𝜓2

∗(𝑟1)𝛽
∗(𝜔1)𝜓1(𝑟2)𝛽(𝜔2)𝜓2(𝑟1)𝛽(𝜔1) 𝑑𝑟1𝑑𝑟2𝑑𝜔1𝑑𝜔2 

=
1

2
|𝜓1(𝑟2)|

2|𝜓2(𝑟1)|
2𝑑𝑟1𝑑𝑟2∫𝛽∗(𝜔1)𝛽(𝜔1)𝑑𝜔1∫𝛽∗(𝜔2)𝛽(𝜔2)𝑑𝜔2 

=
1

2
|𝜓1(𝑟2)|

2|𝜓2(𝑟1)|
2𝑑𝑟1𝑑𝑟2 

∴ 𝑃(𝑟1, 𝑟2)𝑑𝑟1𝑑𝑟2 =
1

2
|𝜓1(𝑟1)|

2|𝜓2(𝑟2)|
2𝑑𝑟1𝑑𝑟2 +

1

2
|𝜓1(𝑟2)|

2|𝜓2(𝑟1)|
2𝑑𝑟1𝑑𝑟2 

−
1

2
∫𝜓1

∗(𝑟1)𝛽
∗(𝜔1)𝜓2

∗(𝑟2)𝛽
∗(𝜔2)𝜓1(𝑟2)𝛽(𝜔2)𝜓2(𝑟1)𝛽(𝜔1) 𝑑𝑟1𝑑𝑟2𝑑𝜔1𝑑𝜔2 
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−
1

2
∫𝜓1

∗(𝑟2)𝛽
∗(𝜔2)𝜓2

∗(𝑟1)𝛽
∗(𝜔1)𝜓1(𝑟1)𝛽(𝜔1)𝜓2(𝑟2)𝛽(𝜔2) 𝑑𝑟1𝑑𝑟2𝑑𝜔1𝑑𝜔2 

Now, 
1

2
∫𝜓1

∗(𝑟1)𝛽
∗(𝜔1)𝜓2

∗(𝑟2)𝛽
∗(𝜔2)𝜓1(𝑟2)𝛽(𝜔2)𝜓2(𝑟1)𝛽(𝜔1) 𝑑𝑟1𝑑𝑟2𝑑𝜔1𝑑𝜔2 

=
1

2
𝜓1
∗(𝑟1)𝜓2(𝑟1)𝜓2

∗(𝑟2)𝜓1(𝑟2)𝑑𝑟1𝑑𝑟2∫𝛽∗(𝜔1)𝛽(𝜔1) 𝑑𝜔1∫𝛽∗(𝜔2)𝛽(𝜔2)𝑑𝜔2 

=
1

2
𝜓1
∗(𝑟1)𝜓2(𝑟1)𝜓2

∗(𝑟2)𝜓1(𝑟2)𝑑𝑟1𝑑𝑟2 

Similarly, 
1

2
∫𝜓1

∗(𝑟2)𝛽
∗(𝜔2)𝜓2

∗(𝑟1)𝛽
∗(𝜔1)𝜓1(𝑟1)𝛽(𝜔1)𝜓2(𝑟2)𝛽(𝜔2) 𝑑𝑟1𝑑𝑟2𝑑𝜔1𝑑𝜔2 

=
1

2
𝜓2
∗(𝑟1)𝜓1(𝑟1)𝜓1

∗(𝑟2)𝜓2(𝑟2)𝑑𝑟1𝑑𝑟2∫𝛽∗(𝜔1)𝛽(𝜔1) 𝑑𝜔1∫𝛽∗(𝜔2)𝛽(𝜔2)𝑑𝜔2 

=
1

2
𝜓2
∗(𝑟1)𝜓1(𝑟1)𝜓1

∗(𝑟2)𝜓2(𝑟2)𝑑𝑟1𝑑𝑟2 

∴ 𝑃(𝑟1, 𝑟2)𝑑𝑟1𝑑𝑟2 =
1

2
|𝜓1(𝑟1)|

2|𝜓2(𝑟2)|
2𝑑𝑟1𝑑𝑟2 +

1

2
|𝜓1(𝑟2)|

2|𝜓2(𝑟1)|
2𝑑𝑟1𝑑𝑟2 

−
1

2
𝜓1
∗(𝑟1)𝜓2(𝑟1)𝜓2

∗(𝑟2)𝜓1(𝑟2)𝑑𝑟1𝑑𝑟2 −
1

2
𝜓2
∗(𝑟1)𝜓1(𝑟1)𝜓1

∗(𝑟2)𝜓2(𝑟2)𝑑𝑟1𝑑𝑟2 

Thus, 

𝑃(𝑟1, 𝑟2)𝑑𝑟1𝑑𝑟2 =
1

2
|𝜓1(𝑟1)|

2|𝜓2(𝑟2)|
2𝑑𝑟1𝑑𝑟2 +

1

2
|𝜓1(𝑟2)|

2|𝜓2(𝑟1)|
2𝑑𝑟1𝑑𝑟2 

−
1

2
𝜓1
∗(𝑟1)𝜓2(𝑟1)𝜓2

∗(𝑟2)𝜓1(𝑟2)𝑑𝑟1𝑑𝑟2 −
1

2
𝜓2
∗(𝑟1)𝜓1(𝑟1)𝜓1

∗(𝑟2)𝜓2(𝑟2)𝑑𝑟1𝑑𝑟2 

so that, 

𝑃(𝑟1, 𝑟2) =
1

2
[|𝜓1(𝑟1)|

2|𝜓2(𝑟2)|
2 + |𝜓1(𝑟2)|

2|𝜓2(𝑟1)|
2 − {𝜓1

∗(𝑟1)𝜓2(𝑟1)𝜓2
∗(𝑟2)𝜓1(𝑟2)

− 𝜓2
∗(𝑟1)𝜓1(𝑟1)𝜓1

∗(𝑟2)𝜓2(𝑟2)}] 
Thus, we now have an extra term, within {⋯ }, that makes the probabilities correlated. This is the 
exchange correlation between the electrons of parallel spin. Note that in this case 𝑃(𝑟1, 𝑟1) = 0. Thus, 
the probability of finding two electrons with parallel spins at the same point in space is zero. 
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The Hartree-Fock (HF) Approximation 
Main challenge of Quantum Chemistry: to solve the time-independent Schrödinger equation for 
molecular systems. Trivial case: H2

+ ion. The simplest antisymmetric wavefunction that can be used to 
describe the ground state of an 𝑁-electron system is a single SD, 

|Ψ0⟩ = |𝜒1𝜒2…𝜒𝑁⟩ 
Variation principle: the best wavefunction of this functional form is the one which gives the lowest 
possible energy 

𝐸0 = ⟨Ψ0|𝐻|Ψ0⟩ 
where 𝐻 is the full electronic Hamiltonian. The variational flexibility in the wavefunction |Ψ0⟩ =
|𝜒1𝜒2…𝜒𝑁⟩ is in the choice of the spin orbitals. By minimizing 𝐸0 with respect to the choice of spin 
orbitals, one can derive an equation, called the Hartree-Fock equation, which determines the optimal 
spin orbitals. We will show that the HF equation is an eigenvalue equation of the form 

𝑓(𝑖)𝜒(𝑥𝑖) = 𝜀𝜒(𝑥𝑖) 
where 𝑓(𝑖) is an effective one-electron operator, called the Fock operator. The Fock operator has the 
form, 

𝑓(𝑖) = −
1

2
∇𝑖
2 −∑

𝑍𝐴
𝑟𝑖𝐴

𝑀

𝐴=1

+ 𝑣𝐻𝐹(𝑖) 

𝑣𝐻𝐹(𝑖) is the average potential experienced by the 𝑖th electron due to the presence of the other 
electrons. The essence of the HF approximation is to replace the complicated many-electron problem 
by a one-electron in which the actual electron-electron repulsion term, 

∑∑
1

|𝑟𝑖 − 𝑟𝑗|

𝑁

𝑗>𝑖

𝑁

𝑖=1

 

is treated in an average manner through the sum over the average HF potential 

∑𝑣𝐻𝐹(𝑖)

𝑁

𝑖=1

 

The HF potential, 𝑣𝐻𝐹(𝑖), or equivalently the field seen by the 𝑖th electron, depends on the spin 
orbitals of the other electrons, that is, the Fock operator depends on its own eigenfunctions. The 
procedure for solving the HF equation 
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𝑓(𝑖)𝜒(𝑥𝑖) = 𝜀𝜒(𝑥𝑖) 
is called the self-consistent-field (SCF) method. The basic idea of the SCF method is simple: 

• By making an initial guess at the spin orbitals, one can evaluate the average field (that is, 𝑣𝐻𝐹) 
seen by each electron. 

• Then one can solve the eigenvalue equation 𝑓(𝑖)𝜒(𝑥𝑖) = 𝜀𝜒(𝑥𝑖) for a new set of spin orbitals. 
• Using these new spin orbitals, one can obtain new fields. 
• This process is repeated until self-consistency is reached, that is, the fields no longer change 

the spin orbitals used to construct the Fock operator are the same as its eigenfunctions. 
The solution of the HF eigenvalue problem 𝑓(𝑖)𝜒(𝑥𝑖) = 𝜀𝜒(𝑥𝑖) yields a set of {𝜒𝑘} of orthonormal HF 
spin orbitals with orbital energies {𝜀𝑘}. The 𝑁 spin orbitals with the lowest energies are called the 
occupied or hole spin orbitals. 
The SD formed from these orbitals is the HF ground state wavefunction and is the best variational 
approximation to the ground state of the system, of the single determinant form. The occupied/hole 
spin orbitals will be henceforth labeled by the indices 𝑎,  𝑏,  𝑐,  … and denoted by 𝜒𝑎 ,  𝜒𝑏 ,  𝜒𝑐 ,  … The 
remaining members of the set {𝜒𝑘} are called virtual/unoccupied/particle spin orbitals. We will 
henceforth label the virtual orbitals by the indices 𝑟,  𝑠,  𝑡,  … and denote the spin orbitals by 
𝜒𝑟 ,  𝜒𝑠,  𝜒𝑡 ,  … In principle, there are an infinite number of solutions to the HF equation 𝑓(𝑖)𝜒(𝑥𝑖) =
𝜀𝜒(𝑥𝑖) and an infinite number of virtual spin orbitals. In practice, the HF equation 𝑓(𝑖)𝜒(𝑥𝑖) = 𝜀𝜒(𝑥𝑖) 
is solved by introducing a finite set of spatial basis functions 

{𝜙𝜇(𝑟),  𝜇 = 1,  2,  3,  … ,  𝐾}. 

The spatial parts of the spin orbitals with the 𝛼 spin function can then be expanded in terms of the 

known set of functions {𝜙𝜇}. The spatial parts of the spin orbitals with the 𝛽 spin function can then 

be expanded in the same way. Then both these expansions are substituted in 𝑓(𝑖)𝜒(𝑥𝑖) = 𝜀𝜒(𝑥𝑖) to 
obtain matrix eigenvalue equations for the expansion coefficients. A basis set of 𝐾 spatial functions 

{𝜙𝜇} leads to a set of 2𝐾 spin orbitals (𝐾 with 𝛼 spin and 𝐾 with 𝛽 spin). This leads to a set of 𝑁 

occupied spin orbitals {𝜒𝑎} and a complementary set of 2𝐾 − 𝑁 unoccupied/virtual spin orbitals {𝜒𝑟}. 
A single SD formed from the set {𝜒𝑎} is the variational HF ground state, for which we will use the 
symbol Ψ0 or |Ψ0⟩. 

 
The 2𝐾 HF spin orbitals have been ordered according to their energy, and we have neglected possible 

degeneracies. The larger and more complete the set of basis functions {𝜙𝜇}, the greater is the degree 

of flexibility in the expansion for the spin orbitals and the lower will be the expectation value 
𝐸0 = ⟨Ψ0|𝐻|Ψ0⟩ 

Larger and larger {𝜙𝜇} will keep lowering 𝐸0 until a limit called the Hartree-Fock limit is reached. Any 

finite value of 𝐾 will lead to an energy somewhat above the HF limit. 
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The Minimal Basis 𝐇𝟐 Model 
This is a model system visualized in light of the familiar LCAO-MO description. Each H atom has a 1𝑠 
AO and as the two atoms approach, Mos are formed as a linear combination of AOs (LCAO). The first 
AO, 𝜙1, is centered on atom 1 at 𝑅1. The value of 𝜙1 at a point 𝑟 is 𝜙1(𝑟), or, since its value depends 
on the distance from its origin, we sometimes write 𝜙1 ≡ 𝜙1(𝑟 − 𝑅1). The second AO is centered on 
atom 2 at 𝑅2, that is 𝜙2 ≡ 𝜙2(𝑟 − 𝑅2). The exact 1𝑠 orbital of a H atom centered at 𝑅 has the form 

𝜙(𝑟 − 𝑅) = (𝜉3 𝜋⁄ )1 2⁄ 𝑒−𝜉|𝑟−𝑅| 
where 𝜉, the orbital exponent, has a value 1.0. This is a case of a Slater type orbital (STO). However, 
we will be concerned mostly with the Gaussian type orbitals (GTOs) since the GTOs lead to simpler 
integral evaluations than STOs. The 1𝑠 GTO has the form 

𝜙(𝑟 − 𝑅) = (2𝛼 𝜋⁄ )3 4⁄ 𝑒−𝛼|𝑟−𝑅|
2
 

where 𝛼 is the Gaussian orbital exponent. 

 
For the present, we need not be concerned with the particular form of the 1𝑠 AOs. The two AOs 𝜙1 
and 𝜙2 can be assumed to be normalized, but they are not orthogonal. They will overlap, such that 
the overlap integral is  

𝑆12 = ∫𝜙1
∗(𝑟)𝜙2(𝑟) 𝑑𝑟 

The overlap will depend on the distance 𝑅12 = |𝑅1 − 𝑅2|, such that,  
𝑆12 = 1 when 𝑅12 = 0 and 𝑆12 = 0 when 𝑅12 = ∞ 

From the two localized AOs, 𝜙1 and 𝜙2, one can form, by linear combination, two delocalized MOs. 
The symmetric combination leads to a bonding MO of gerade symmetry (that is, it is symmetric with 
respect to inversion about the point centered between the nuclei) 

𝜓1 =
1

√2(1 + 𝑆12)
(𝜙1 + 𝜙2) 

The antisymmetric combination leads to a antibonding MO of ungerade symmetry (that is, it is 
antisymmetric with respect to inversion about the point centered between the nuclei) 

𝜓2 =
1

√2(1 − 𝑆12)
(𝜙1 − 𝜙2) 

How are 𝜓1 and 𝜓2 related to each other? We note that, 

⟨𝜓1|𝜓1⟩ =
1

2(1 + 𝑆12)
∫(𝜙1

∗ + 𝜙2
∗)(𝜙1 + 𝜙2) 𝑑𝜏

=
1

2(1 + 𝑆12)
[⟨𝜙1|𝜙1⟩ + ⟨𝜙2|𝜙2⟩ + ⟨𝜙1|𝜙2⟩ + ⟨𝜙2|𝜙1⟩]

=
1

2(1 + 𝑆12)
[1 + 1 + 2𝑆12] = 1 

In the same manner, ⟨𝜓2|𝜓2⟩ = 1. However, 

⟨𝜓1|𝜓2⟩ =
1

√2(1 + 𝑆12)

1

√2(1 − 𝑆12)
∫(𝜙1

∗ + 𝜙2
∗)(𝜙1 − 𝜙2) 𝑑𝜏 
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∴ ⟨𝜓1|𝜓2⟩ =
1

√4(1 − 𝑆12
2 )

[1 − 1 − 𝑆12 + 𝑆12] = 0 

Thus, 𝜓1 and 𝜓2 form an orthonormal set. The above procedure is the simplest example of the general 
technique of expanding a set of spatial MOs in a set of known spatial basis functions 

𝜓𝑖(𝑟) = ∑ 𝑐𝜇𝑖

𝐾

𝜇=1

𝜙𝜇(𝑟) 

To obtain the exact MOs for H2 one would need an infinite number of terms in such an expansion. 
Using only two basis functions for H2 is an example of a minimal basis set and the obvious choice for 
the two functions 𝜙1 and 𝜙2 is the 1𝑠 AOs of the toms. The correct linear combinations for this simple 
choice are determined by symmetry, and one need not solve the HF equations. The MOs 𝜓1 and 𝜓2 
in 

𝜓1 =
1

√2(1 + 𝑆12)
(𝜙1 + 𝜙2)  and  𝜓2 =

1

√2(1 − 𝑆12)
(𝜙1 − 𝜙2) 

are the HF spatial orbitals in the space spanned by 𝜙1 and 𝜙2. Given the two spatial orbitals 𝜓1 and 
𝜓2, we can form four spin orbitals 

𝜒1(𝑥) = 𝜓1(𝑟)𝛼(𝜔) 
𝜒2(𝑥) = 𝜓1(𝑟)𝛽(𝜔) 
𝜒3(𝑥) = 𝜓2(𝑟)𝛼(𝜔) 
𝜒4(𝑥) = 𝜓2(𝑟)𝛽(𝜔) 

The orbital energies associated with these spin orbitals can be obtained only by explicitly considering 
the HF operator. However, as might be expected, 𝜒1 and 𝜒2 are degenerate and have the lower energy 
corresponding to the bonding situation. Similarly, 𝜒3 and 𝜒4 are also degenerate having a higher 
energy corresponding to an antibonding situation. The HF ground state in this model is the single 
determinant, 

|Ψ0⟩ = |𝜒1𝜒2⟩ 
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Excited Determinants 
The HF procedure produces a set {𝜒𝑖} of 2𝐾 spin orbitals. The HF ground state, 

|Ψ0⟩ = |𝜒1𝜒2⋯𝜒𝑎𝜒𝑏⋯𝜒𝑁⟩ 
is the best (in a variational sense) approximation to the ground state. |Ψ0⟩ has a single determinantal 
form. However, |Ψ0⟩ is only one of the many determinants that could be formed from 2𝐾 > 𝑁 spin 
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orbitals. How many possible single determinants can be formed from 2𝐾 spin orbitals and 𝑁 
electrons? 

𝐶𝑁
2𝐾 =

(2𝐾)!

𝑁! (2𝐾 −𝑁)!
 

|Ψ0⟩ is just one of them. A convenient way of describing the determinants other than |Ψ0⟩ is to 
consider the HF ground state |Ψ0⟩ = |𝜒1𝜒2⋯𝜒𝑎𝜒𝑏⋯𝜒𝑁⟩ to be a reference state. We classify the 
other possible determinants by how they differ from the reference state |Ψ0⟩. For example, we may 
state which occupied/hole spin orbitals of the set {𝜒𝑎} in |Ψ0⟩ = |𝜒1𝜒2⋯𝜒𝑎𝜒𝑏⋯𝜒𝑁⟩ have been 
replaced by which virtual/unoccupied/particle spin orbitals of the set {𝜒𝑟}. These other determinants 
are representations of the approximate excited states of the system. These other determinants when 
linearly combined with the HF ground state determinant |Ψ0⟩ can be seen to be a more accurate 
description of the ground state or any excited state of the system. A singly excited determinant is one 
in which an electron, which occupied 𝜒𝑎 in the HF ground state |Ψ0⟩ = |𝜒1𝜒2⋯𝜒𝑎𝜒𝑏⋯𝜒𝑁⟩, has been 
promoted to a virtual 𝜒𝑟, 

|Ψ𝑎
𝑟⟩ = |𝜒1𝜒2⋯𝜒𝑟𝜒𝑏⋯𝜒𝑁⟩ 

A doubly excited determinant is one in which the electrons have been excited from 𝜒𝑎 and 𝜒𝑏 in the 
HF ground state |Ψ0⟩ = |𝜒1𝜒2⋯𝜒𝑎𝜒𝑏⋯𝜒𝑁⟩, to the virtual orbitals 𝜒𝑟  and 𝜒𝑠 

|Ψ𝑎𝑏
𝑟𝑠⟩ = |𝜒1𝜒2⋯𝜒𝑟𝜒𝑠⋯𝜒𝑁⟩ 

All the 𝐶𝑁
2𝐾 determinants can thus be classified as either the HF ground state or singly, doubly, triply, 

quadruply, …, 𝑁-tuply excited states. The importance of these determinants as approximate 
representations of the true states of the system diminishes in the above order. While the excited 
determinants are not accurate representations of the excited states of the system, they are important 
as 𝑁-electron basis functions for an expansion of the exact 𝑁-electron states of the system. All the 
𝐶𝑁
2𝐾 determinants can thus be classified as either the HF ground state or singly, doubly, triply, 

quadruply, …, 𝑁-tuply excited states. The importance of these determinants as approximate 
representations of the true states of the system diminishes in the above order. While the excited 
determinants are not accurate representations of the excited states of the system, they are important 
as 𝑁-electron basis functions for an expansion of the exact 𝑁-electron states of the system. 

  
Form of the Exact Wave Function and Configuration Interaction 
We consider the use of these excited determinants as 𝑁-electron basis functions. Suppose we have a 
complete set of functions {𝜒𝑖(𝑥)}. Any function Φ(𝑥1) of a single variable can then be exactly 
expanded as, 

Φ(𝑥1) =∑𝑎𝑖
𝑖

𝜒𝑖(𝑥1) 

where 𝑎𝑖  is an expansion coefficient. How can we expand a function of two variables Φ(𝑥1, 𝑥2) in an 
analogous way? If we think of 𝑥2 as being held fixed, then we can expand Φ(𝑥1, 𝑥2) as 
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Φ(𝑥1, 𝑥2) =∑𝑎𝑖
𝑖

(𝑥2)𝜒𝑖(𝑥1) 

In the expansion 

Φ(𝑥1, 𝑥2) =∑𝑎𝑖
𝑖

(𝑥2)𝜒𝑖(𝑥1) 

the expansion coefficients are now functions of 𝑥2. Since 𝑎𝑖(𝑥2) is a function of a single variable, it 
can be expanded in the complete set {𝜒𝑖} as 

𝑎𝑖(𝑥2) =∑𝑏𝑖𝑗
𝑗

𝜒𝑗(𝑥2) 

Thus, we have, 

Φ(𝑥1, 𝑥2) =∑𝑏𝑖𝑗
𝑖𝑗

𝜒𝑖(𝑥1)𝜒𝑗(𝑥2) 

If, however, we require Φ to be antisymmetric, 
Φ(𝑥1, 𝑥2) = −Φ(𝑥2, 𝑥1) 

then, 𝑏𝑖𝑗 = −𝑏𝑗𝑖 and 𝑏𝑖𝑖 = 0, or 

Φ(𝑥1, 𝑥2) =∑∑𝑏𝑖𝑗
𝑗>𝑖

[𝜒𝑖(𝑥1)𝜒𝑗(𝑥2) − 𝜒𝑗(𝑥1)𝜒𝑖(𝑥2)]

𝑖

=
1

√2
∑𝑏𝑖𝑗
𝑖<𝑗

|𝜒𝑖𝜒𝑗⟩ 

Thus, an arbitrary antisymmetric function of the two variables can be exactly expanded in terms of all 
unique determinants formed from a complete set of one-variable functions {𝜒𝑖(𝑥)}. This argument is 
readily extended to more than two variables, so that the exact wavefunction for the ground and 
excited states of our 𝑁-electron problem can be written as a linear combination of all possible 𝑁-
electron SDs formed from a complete set of spin orbitals {𝜒𝑖}. Since all possible determinants can be 
described by reference to the HF determinant, we can write the exact wavefunction for any state of 
the system as, 

|Φ⟩ = 𝑐0|Ψ0⟩ +∑𝑐𝑎
𝑟

𝑟𝑎

|Ψ𝑎
𝑟⟩ + ∑ 𝑐𝑎𝑏

𝑟𝑠

𝑎<𝑏
𝑟<𝑠

|Ψ𝑎𝑏
𝑟𝑠 ⟩ + ∑ 𝑐𝑎𝑏𝑐

𝑟𝑠𝑡

𝑎<𝑏<𝑐
𝑟<𝑠<𝑡

|Ψ𝑎𝑏𝑐
𝑟𝑠𝑡 ⟩ + ⋯ 

Thus, the infinite set of 𝑁-electron determinants 

{|Ψ𝑖⟩} = {|Ψ0⟩, |Ψ𝑎
𝑟⟩, |Ψ𝑎𝑏

𝑟𝑠 ⟩, |Ψ𝑎𝑏𝑐
𝑟𝑠𝑡 ⟩,… } 

is a complete set for the expansion of any 𝑁-electron wavefunction. The exact energies of the ground 
and excited states of the system are the eigenvalues of the Hamiltonian matrix, that is, the matrix with 

elements ⟨Ψ𝑖|𝐻|Ψ𝑗⟩ formed from the complete set {|Ψ𝑖⟩}. Since every |Ψ𝑖⟩ can be defined by 

specifying a configuration of spin orbitals from which it is formed, this procedure is called 
configuration interaction (CI). The lowest eigenvalue of the Hamiltonian matrix, denoted by ℰ0, 
calculated variationally as ℰ0 = ⟨Φ|𝐻|Φ⟩, is the exact non-relativistic ground state energy of the 
system within the BO approximation. The difference between the exact non-relativistic ground state 
energy ℰ0 and the energy in the HF limit 𝐸0 is called the correlation energy, 𝐸correlation: 

𝐸correlation = ℰ0 − 𝐸0 where ℰ0 = ⟨Φ|𝐻|Φ⟩ and 𝐸0 = ⟨Ψ0|𝐻|Ψ0⟩ 
since the motion of electrons with opposite spins is not correlated within the HF approximation. 
Unfortunately, the above procedure for the complete solution to many-electron problem cannot be 
implemented in practice, because one cannot handle infinite basis sets. If we work with a finite set of 
spin orbitals {𝜒𝑖|𝑖 = 1,  2,  3,  … ,  2𝐾}, then the 𝐶𝑁

2𝐾 determinants formed from these spin orbitals do 
not form a complete 𝑁-electron basis. However, diagonalizing the finite Hamiltonian matrix formed 

from these 𝐶𝑁
2𝐾 determinants lead to solutions that are exact within the one-electron subspace 

spanned by the 2𝐾 spin orbitals, or, equivalently, within the 𝑁-electron subspace spanned by the 𝐶𝑁
2𝐾 

determinants. This procedure is called the full CI (FCI). Even for relatively small systems and minimal 
basis sets, the number of determinants that must be included in a FCI calculation is extremely large. 
To illustrate how large a FCI calculation can be even with the minimal basis, let us consider the case 
of benzene in the minimal basis. 
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A minimal basis set for benzene consists of 72 spin orbitals (2𝐾 = 72). [one 1𝑠 AO for each H atom, 
one 1𝑠, one 2𝑠 and three 2𝑝 for each C atom (five AOs per C atom); this makes a total of 36 spatial 
AOs in the whole molecule; thus, there are 72 spin AOs.] There are a total of 42 electrons (𝑁 = 42). 
The size of the FCI matrix:  

𝐶𝑁
2𝐾 =

72!

42! 30!
= 1.643 × 1020 

For singly excited determinants an electron can jump from any of the 𝜒𝑎 spin orbitals (there are 𝑁 of 
them) to any of the 𝜒𝑟  spin orbitals (there are 2𝐾 − 𝑁 of them). 
∴ There are 𝑁(2𝐾 −𝑁) = 30 × 42 = 1260 singly excited determinants. For doubly excited 

determinants there are 
𝑁(𝑁−1)

2
 pairs 𝜒𝑎𝜒𝑏 spin orbitals and 

(2𝐾−𝑁)(2𝐾−𝑁−1)

2
 pairs of 𝜒𝑟𝜒𝑠  spin orbitals. 

∴ There are 
𝑁(𝑁−1)(2𝐾−𝑁)(2𝐾−𝑁−1)

4
= 374535 possible doubly excited determinants. Similarly, there 

are 186435200 possible triply excited determinants, and so on. Let us illustrate these ideas with the 
minimal basis H2 model. There are (2𝐾 = 4) spin orbitals 

𝜒1(𝑥) = 𝜓1(𝑟)𝛼(𝜔) 
𝜒2(𝑥) = 𝜓1(𝑟)𝛽(𝜔) 
𝜒3(𝑥) = 𝜓2(𝑟)𝛼(𝜔) 
𝜒4(𝑥) = 𝜓2(𝑟)𝛽(𝜔) 

Since 𝑁 = 2, we can form 𝐶𝑁
2𝐾 = 4! (2! 2!)⁄ = 6 unique determinants. The HF ground state 

determinant is |Ψ0⟩ = |𝜒1𝜒2⟩ = |𝜓1𝜓̅1⟩ = |1 1̅⟩. The singly excited determinants are 

|Ψ1
2⟩ = |2 1̅⟩ 

|Ψ1
2̅⟩ = |2̅ 1̅⟩ 

|Ψ1̅
2⟩ = |1 2⟩ 

|Ψ1̅
2̅⟩ = |1 2̅⟩ 

 
There is only one doubly excited determinant, 

|Ψ11̅
22̅⟩ = |2 2̅⟩ = |𝜒3𝜒4⟩ = |Ψ12

34⟩ 

Within the space spanned by the minimal basis set, the exact wavefunction will be a linear 
combination of these six determinants. The HF ground state |Ψ0⟩ has two electrons in a 𝑔 symmetric 

orbital and is of 𝑔 symmetry (⊕⊗⊕=⊕). The doubly excited determinant |Ψ12
34⟩ has two electrons 

in an 𝑢 orbital and hence is also of 𝑔 symmetry (⊖⊗⊖=⊕). However, the singly excited 
determinants have one electron in a 𝑔 symmetric orbital and one in a 𝑢 symmetric orbital, so that the 
overall symmetry is 𝑢 (⊕⊗⊖=⊖). The exact ground state wavefunction of the minimal basis H2, 
|Φ0⟩, like the HF approximation to it, |Ψ0⟩, is of 𝑔 symmetry. Therefore, only the determinants of 𝑔 
symmetry can appear in the expansion for |Φ0⟩, so that, we have 

|Φ0⟩ = 𝑐0|Ψ0⟩ + 𝑐12
34|Ψ12

34⟩ 

The exact value of the coefficients 𝑐0 and 𝑐12
34 in the exact wavefunction |Φ0⟩ and the value of the 

exact energy ⟨Φ0|𝐻|Φ0⟩ can be determined by diagonalizing the FCI matrix. The FCI matrix is a 2 × 2 

https://meet.google.com/beq-bejw-vqz


GOOGLE MEET LINK: https://meet.google.com/beq-bejw-vqz (CLASS-5, 05/05/2024) 

PG SEMESTER-IV 2023-2024 (PHYSICAL CHEMISTRY SPECIALIZATION) / CEM 402 / UNIT-1 

Hamiltonian matrix in the basis spanned by {|Ψ0⟩} and |Ψ12
34⟩. The FCI Hamiltonian matrix for this 

system will be, 

𝑯 = (
⟨Ψ0|𝐻|Ψ0⟩ ⟨Ψ0|𝐻|Ψ12

34⟩

⟨Ψ12
34|𝐻|Ψ0⟩ ⟨Ψ12

34|𝐻|Ψ12
34⟩

) 

To proceed any further with this problem, we need to be able to evaluate the matrix elements. 
 

https://meet.google.com/beq-bejw-vqz


GOOGLE MEET LINK: https://meet.google.com/beq-bejw-vqz (CLASS-6, 12/05/2024) 

PG SEMESTER-IV 2023-2024 (PHYSICAL CHEMISTRY SPECIALIZATION) / CEM 402 / UNIT-1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://meet.google.com/beq-bejw-vqz


GOOGLE MEET LINK: https://meet.google.com/beq-bejw-vqz (CLASS-6, 12/05/2024) 

PG SEMESTER-IV 2023-2024 (PHYSICAL CHEMISTRY SPECIALIZATION) / CEM 402 / UNIT-1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://meet.google.com/beq-bejw-vqz


GOOGLE MEET LINK: https://meet.google.com/beq-bejw-vqz (CLASS-6, 12/05/2024) 

PG SEMESTER-IV 2023-2024 (PHYSICAL CHEMISTRY SPECIALIZATION) / CEM 402 / UNIT-1 

The FCI Hamiltonian matrix for the minimal basis H2 system will be, 

𝑯 = (
⟨Ψ0|𝐻|Ψ0⟩ ⟨Ψ0|𝐻|Ψ12

34⟩

⟨Ψ12
34|𝐻|Ψ0⟩ ⟨Ψ12

34|𝐻|Ψ12
34⟩

) 

To proceed any further with this problem, we need to be able to evaluate the matrix elements. 
Operator and Matrix Elements 
Given an operator 𝒪 and two 𝑁-electron determinants |𝐾⟩ and |𝐿⟩, our problem is to evaluate ⟨𝐾|𝒪|𝐿⟩. 
Minimal Basis 𝐇𝟐 Matrix Elements 

Let us evaluate the matrix elements that appear in 𝑯, that is, ⟨Ψ0|𝐻|Ψ0⟩, ⟨Ψ12
34|𝐻|Ψ12

34⟩, ⟨Ψ0|𝐻|Ψ12
34⟩ and 

⟨Ψ12
34|𝐻|Ψ0⟩. The Hamiltonian, 

𝐻 = (−
1

2
∇1
2 −∑

𝑍𝐴
𝑟1𝐴

𝐴

) + (−
1

2
∇2
2 −∑

𝑍𝐴
𝑟2𝐴

𝐴

) +
1

𝑟12
= ℎ(1) + ℎ(2) +

1

𝑟12
 

where ℎ(𝑖),  𝑖 = 1,  2 is the core Hamiltonian for electron 𝑖, describing its KE and PE in the field of the nuclei 
(the core). We define the one-body portion of 𝐻 as 𝒪1 = ℎ(1) + ℎ(2). Similarly, the two-body portion of 𝐻 

is defined as 𝒪2 = 𝑟12
−1. Therefore, 

𝐻 = ℎ(1) + ℎ(2) +
1

𝑟12
= 𝒪1 + 𝒪2 

so that, any matrix element, ⟨𝐾|𝐻|𝐿⟩ = ⟨𝐾|𝒪1 + 𝒪2|𝐿⟩ = ⟨𝐾|𝒪1|𝐿⟩ + ⟨𝐾|𝒪2|𝐿⟩, for any |𝐾⟩ and |𝐿⟩. 
∴ ⟨Ψ0|𝐻|Ψ0⟩ = ⟨Ψ0|𝒪1 + 𝒪2|Ψ0⟩ = ⟨Ψ0|𝒪1|Ψ0⟩ + ⟨Ψ0|𝒪2|Ψ0⟩ 

so that, 

⟨Ψ0|𝐻|Ψ0⟩ = ⟨Ψ0|ℎ(1)|Ψ0⟩ + ⟨Ψ0|ℎ(2)|Ψ0⟩ + ⟨Ψ0|
1
𝑟12

|Ψ0⟩ 

For the other three integrals in the Hamiltonian matrix,  

(
⟨Ψ0|𝐻|Ψ0⟩ ⟨Ψ0|𝐻|Ψ12

34⟩

⟨Ψ12
34|𝐻|Ψ0⟩ ⟨Ψ12

34|𝐻|Ψ12
34⟩

) 

similar expressions can be written. For the other three integrals in the Hamiltonian matrix, ⟨Ψ12
34|𝐻|Ψ12

34⟩, 

⟨Ψ0|𝐻|Ψ12
34⟩ and ⟨Ψ12

34|𝐻|Ψ0⟩ similar expressions can be written. Let us first consider the matrix element 
⟨Ψ0|𝒪1|Ψ0⟩, which from ℎ(1) + ℎ(2) = 𝒪1 may be expressed as  

⟨Ψ0|ℎ(1)|Ψ0⟩ = ∫𝑑𝑥1𝑑𝑥2 [
1

√2
{𝜒1(𝑥1)𝜒2(𝑥2) − 𝜒2(𝑥1)𝜒1(𝑥2)}]

∗

× ℎ(𝑟1) [
1

√2
{𝜒1(𝑥1)𝜒2(𝑥2) − 𝜒2(𝑥1)𝜒1(𝑥2)}] 

=
1

2
∫𝑑𝑥1𝑑𝑥2 [𝜒1

∗(𝑥1)𝜒2
∗(𝑥2)ℎ(𝑟1)𝜒1(𝑥1)𝜒2(𝑥2) + 𝜒2

∗(𝑥1)𝜒1
∗(𝑥2)ℎ(𝑟1)𝜒2(𝑥1)𝜒1(𝑥2)

− 𝜒1
∗(𝑥1)𝜒2

∗(𝑥2)ℎ(𝑟1)𝜒2(𝑥1)𝜒1(𝑥2) − 𝜒2
∗(𝑥1)𝜒1

∗(𝑥2)ℎ(𝑟1)𝜒1(𝑥1)𝜒2(𝑥2)] 
Thus, we have  

⟨Ψ0|ℎ(1)|Ψ0⟩ =
1

2
∫𝑑𝑥1𝑑𝑥2 𝜒1

∗(𝑥1)𝜒2
∗(𝑥2)ℎ(𝑟1)𝜒1(𝑥1)𝜒2(𝑥2) +

1

2
∫𝑑𝑥1𝑑𝑥2 𝜒2

∗(𝑥1)𝜒1
∗(𝑥2)ℎ(𝑟1)𝜒2(𝑥1)𝜒1(𝑥2)

−
1

2
∫𝑑𝑥1𝑑𝑥2 𝜒1

∗(𝑥1)𝜒2
∗(𝑥2)ℎ(𝑟1)𝜒2(𝑥1)𝜒1(𝑥2) −

1

2
∫𝑑𝑥1𝑑𝑥2 𝜒2

∗(𝑥1)𝜒1
∗(𝑥2)ℎ(𝑟1)𝜒1(𝑥1)𝜒2(𝑥2) 

Now,  
1

2
∫𝑑𝑥1𝑑𝑥2 𝜒1

∗(𝑥1)𝜒2
∗(𝑥2)ℎ(𝑟1)𝜒1(𝑥1)𝜒2(𝑥2) =

1

2
∫𝑑𝑥1 𝜒1

∗(𝑥1)ℎ(𝑟1)𝜒1(𝑥1)∫𝑑𝑥2 𝜒2
∗(𝑥2)𝜒2(𝑥2)

=
1

2
∫𝑑𝑥1 𝜒1

∗(𝑥1)ℎ(𝑟1)𝜒1(𝑥1) 

Similarly, 
1

2
∫𝑑𝑥1𝑑𝑥2 𝜒2

∗(𝑥1)𝜒1
∗(𝑥2)ℎ(𝑟1)𝜒2(𝑥1)𝜒1(𝑥2) =

1

2
∫𝑑𝑥1 𝜒2

∗(𝑥1)ℎ(𝑟1)𝜒2(𝑥1)∫𝑑𝑥2 𝜒1
∗(𝑥2)𝜒1(𝑥2)

=
1

2
∫𝑑𝑥1 𝜒2

∗(𝑥1)ℎ(𝑟1)𝜒2(𝑥1) 

Again, 
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1

2
∫𝑑𝑥1𝑑𝑥2 𝜒1

∗(𝑥1)𝜒2
∗(𝑥2)ℎ(𝑟1)𝜒2(𝑥1)𝜒1(𝑥2) =

1

2
∫𝑑𝑥1 𝜒1

∗(𝑥1)ℎ(𝑟1)𝜒2(𝑥1)∫𝑑𝑥2 𝜒2
∗(𝑥2)𝜒1(𝑥2) = 0 

In the same manner  
1

2
∫𝑑𝑥1𝑑𝑥2 𝜒2

∗(𝑥1)𝜒1
∗(𝑥2)ℎ(𝑟1)𝜒1(𝑥1)𝜒2(𝑥2) = 0 

∴ ⟨Ψ0|ℎ(1)|Ψ0⟩ =
1

2
∫𝑑𝑥1 𝜒1

∗(𝑥1)ℎ(𝑟1)𝜒1(𝑥1) +
1

2
∫𝑑𝑥1 𝜒2

∗(𝑥1)ℎ(𝑟1)𝜒2(𝑥1) 

In an identical manner, 

⟨Ψ0|ℎ(2)|Ψ0⟩ =
1

2
∫𝑑𝑥1 𝜒2

∗(𝑥1)ℎ(𝑟1)𝜒2(𝑥1) +
1

2
∫𝑑𝑥1 𝜒1

∗(𝑥1)ℎ(𝑟1)𝜒1(𝑥1), 

so that, 
⟨Ψ0|𝒪1|Ψ0⟩ = ⟨Ψ0|ℎ(1)|Ψ0⟩ + ⟨Ψ0|ℎ(2)|Ψ0⟩ 

𝑜𝑟, ⟨Ψ0|𝒪1|Ψ0⟩ = ∫𝑑𝑥1 𝜒1
∗(𝑥1)ℎ(𝑟1)𝜒1(𝑥1) + ∫𝑑𝑥1 𝜒2

∗(𝑥1)ℎ(𝑟1)𝜒2(𝑥1) 

The integrals in the above expression are one-electron integrals, that is, the integration is over the 
coordinates of a single electron. The dummy variables of integration are, by convention, chosen to be the 
coordinates of electron-1. Introducing the following notation for the one-electron integrals involving spin 
orbitals, 

⟨𝑖|ℎ|𝑗⟩ = ⟨𝜒𝑖|ℎ|𝜒𝑗⟩ = ∫𝑑𝑥1 𝜒𝑖
∗(𝑥1)ℎ(𝑟1)𝜒𝑗(𝑥1) 

Therefore, using the notation, 

⟨𝑖|ℎ|𝑗⟩ = ⟨𝜒𝑖|ℎ|𝜒𝑗⟩ = ∫𝑑𝑥1 𝜒𝑖
∗(𝑥1)ℎ(𝑟1)𝜒𝑗(𝑥1) 

the integral, 
⟨Ψ0|𝒪1|Ψ0⟩ = ⟨Ψ0|ℎ(1)|Ψ0⟩ + ⟨Ψ0|ℎ(2)|Ψ0⟩ 

becomes, 
⟨Ψ0|𝒪1|Ψ0⟩ = ⟨1|ℎ|1⟩ + ⟨2|ℎ|2⟩ 

Let us now evaluate the integral ⟨Ψ0|𝒪2|Ψ0⟩. 

⟨Ψ0|𝒪2|Ψ0⟩ = ∫𝑑𝑥1𝑑𝑥2 [
1

√2
{𝜒1(𝑥1)𝜒2(𝑥2) − 𝜒2(𝑥1)𝜒1(𝑥2)}]

∗

× 𝑟12
−1 [

1

√2
{𝜒1(𝑥1)𝜒2(𝑥2) − 𝜒2(𝑥1)𝜒1(𝑥2)}]

=
1

2
∫𝑑𝑥1𝑑𝑥2 [𝜒1

∗(𝑥1)𝜒2
∗(𝑥2)𝑟12

−1𝜒1(𝑥1)𝜒2(𝑥2) + 𝜒2
∗(𝑥1)𝜒1

∗(𝑥2)𝑟12
−1𝜒2(𝑥1)𝜒1(𝑥2)

− 𝜒1
∗(𝑥1)𝜒2

∗(𝑥2)𝑟12
−1𝜒2(𝑥1)𝜒1(𝑥2) − 𝜒2

∗(𝑥1)𝜒1
∗(𝑥2)𝑟12

−1𝜒1(𝑥1)𝜒2(𝑥2)] 
Since, 𝑟12 = 𝑟21, we can interchange the dummy variables of integration in the second term of the above 
expression and show that it is equal to the first term. Similarly, the third and fourth terms are equal. 

⟨Ψ0|𝒪2|Ψ0⟩ = ∫𝑑𝑥1𝑑𝑥2 𝜒1
∗(𝑥1)𝜒2

∗(𝑥2)𝑟12
−1𝜒1(𝑥1)𝜒2(𝑥2) − ∫𝑑𝑥1𝑑𝑥2 𝜒1

∗(𝑥1)𝜒2
∗(𝑥2)𝑟12

−1𝜒2(𝑥1)𝜒1(𝑥2) 

The integrals in the above expression are two-electron integrals, that is, the integration is over the 8 space 
and spin coordinates of two electrons (why 8?). Therefore, using the notation, 

⟨𝑖𝑗|𝑘𝑙⟩ = ⟨𝜒𝑖𝜒𝑗|𝜒𝑘𝜒𝑙⟩ = ∫𝑑𝑥1𝑑𝑥2 𝜒𝑖
∗(𝑥1)𝜒𝑗

∗(𝑥2)𝑟12
−1𝜒𝑘(𝑥1)𝜒𝑙(𝑥2), 

for  

⟨Ψ0|𝒪2|Ψ0⟩ = ∫𝑑𝑥1𝑑𝑥2 𝜒1
∗(𝑥1)𝜒2

∗(𝑥2)𝑟12
−1𝜒1(𝑥1)𝜒2(𝑥2) − ∫𝑑𝑥1𝑑𝑥2 𝜒1

∗(𝑥1)𝜒2
∗(𝑥2)𝑟12

−1𝜒2(𝑥1)𝜒1(𝑥2) 

we have, 
⟨Ψ0|𝒪2|Ψ0⟩ = ⟨12|12⟩ − ⟨12|21⟩ 

∴ The HF ground state 𝐸0 energy is, 
𝐸0 = ⟨Ψ0|𝐻|Ψ0⟩ = ⟨Ψ0|𝒪1 + 𝒪2|Ψ0⟩ = ⟨Ψ0|𝒪1|Ψ0⟩ + ⟨Ψ0|𝒪2|Ψ0⟩ 

 
 

https://meet.google.com/beq-bejw-vqz


GOOGLE MEET LINK: https://meet.google.com/beq-bejw-vqz (CLASS-7, 20/05/2024) 

PG SEMESTER-IV 2023-2024 (PHYSICAL CHEMISTRY SPECIALIZATION) / CEM 402 / UNIT-1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://meet.google.com/beq-bejw-vqz


GOOGLE MEET LINK: https://meet.google.com/beq-bejw-vqz (CLASS-7, 20/05/2024) 

PG SEMESTER-IV 2023-2024 (PHYSICAL CHEMISTRY SPECIALIZATION) / CEM 402 / UNIT-1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
General Rules for Matrix Elements 
It is fairly easy to evaluate matrix elements between two-electron SDs. The 𝑁-electron case is more 
complicated. We present a set of rules (which will derive) to evaluate these matrix elements. There are two 
types of operators in Quantum Chemistry. The first type of operator is a sum of the one-electron operators, 

𝒪1 = ∑ℎ(𝑖)

𝑁

𝑖=1

 

where ℎ(𝑖) is any operator involving the 𝑖th electron only. These operators represent dynamic variables that 
depend only on the position or momentum of the electron in question, independent of the position or 
momentum of other electrons. Examples are: operators for the kinetic energy and operators for the 
attraction of an electron to a nucleus, etc. The second type of operator is a sum of the two-electron operators, 

𝒪2 =∑∑𝑣(𝑖, 𝑗)

𝑁

𝑗>𝑖

𝑁

𝑖=1

≡ ∑𝑣(𝑖, 𝑗)

𝑖<𝑗
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where 𝑣(𝑖, 𝑗) is an operator that depends on the position (or momentum) of both the 𝑖th and 𝑗th electron. 

The Coulomb interaction between two electrons 𝑣(𝑖, 𝑗) = 𝑟𝑖𝑗
−1 is such an operator. The summation in the 

above expression is over all unique pairs of electrons. The rules for evaluating the matrix element ⟨𝐾|𝒪|𝐿⟩ 
between the determinants |𝐾⟩ and |𝐿⟩ depend on  

• whether the operator 𝒪 is a sum of the one-electron operators (𝒪1) or a sum of the two-electron 
operators (𝒪2), and  

• the degree to which the two determinants |𝐾⟩ and |𝐿⟩ differ. 
We can distinguish three cases: 
Case-I: When the two determinants |𝐾⟩ and |𝐿⟩ are identical. Therefore, the matrix element is a diagonal 
matrix element, ⟨𝐾|𝒪|𝐾⟩. We choose the determinant to be, 

|𝐾⟩ = |⋯𝜒𝑚𝜒𝑛⋯⟩ 
Case-II: When the two determinants |𝐾⟩ and |𝐿⟩ differ by one spin orbital, 𝜒𝑚 in |𝐾⟩ being replaced by 𝜒𝑝 in 
|𝐿⟩. 

|𝐾⟩ = |⋯𝜒𝑚𝜒𝑛⋯⟩, |𝐿⟩ = |⋯𝜒𝑝𝜒𝑛⋯⟩ 

Case-III: When the two determinants |𝐾⟩ and |𝐿⟩ differ by two spin orbitals, 𝜒𝑚 and 𝜒𝑛 in |𝐾⟩ being replaced 
by 𝜒𝑝 and 𝜒𝑞 in |𝐿⟩. 

|𝐾⟩ = |⋯𝜒𝑚𝜒𝑛⋯⟩, |𝐿⟩ = |⋯𝜒𝑝𝜒𝑞 ⋯⟩ 

When the two determinants differ by three or more spin orbitals, the matrix element is always zero. 
Rules for the matrix elements for 

𝒪1 = ∑ℎ(𝑖)

𝑁

𝑖=1

 

Case-I: |𝐾⟩ = |⋯𝜒𝑚𝜒𝑛⋯⟩ 

⟨𝐾|𝒪1|𝐾⟩ = ∑⟨𝑚|ℎ|𝑚⟩

𝑁

𝑚=1

 

Case-II: |𝐾⟩ = |⋯𝜒𝑚𝜒𝑛⋯⟩, |𝐿⟩ = |⋯𝜒𝑝𝜒𝑛⋯⟩ 

⟨𝐾|𝒪1|𝐿⟩ = ⟨𝑚|ℎ|𝑝⟩ 

Case-III: |𝐾⟩ = |⋯𝜒𝑚𝜒𝑛⋯⟩, |𝐿⟩ = |⋯𝜒𝑝𝜒𝑞 ⋯⟩ 
⟨𝐾|𝒪1|𝐿⟩ = 0 

Rules for the matrix elements for 

𝒪2 = ∑∑𝑟𝑖𝑗
−1

𝑁

𝑗>𝑖

𝑁

𝑖=1

 

Case-I: |𝐾⟩ = |⋯𝜒𝑚𝜒𝑛⋯⟩ 

⟨𝐾|𝒪2|𝐾⟩ =
1

2
∑ ∑[⟨𝑚𝑛|𝑚𝑛⟩ − ⟨𝑚𝑛|𝑛𝑚⟩]

𝑁

𝑛=1

𝑁

𝑚=1

 

Case-II: |𝐾⟩ = |⋯𝜒𝑚𝜒𝑛⋯⟩, |𝐿⟩ = |⋯𝜒𝑝𝜒𝑛⋯⟩ 

⟨𝐾|𝒪2|𝐿⟩ = ∑[⟨𝑚𝑛|𝑝𝑛⟩ − ⟨𝑚𝑛|𝑛𝑝⟩]

𝑁

𝑛=1

 

Case-III: |𝐾⟩ = |⋯𝜒𝑚𝜒𝑛⋯⟩, |𝐿⟩ = |⋯𝜒𝑝𝜒𝑞 ⋯⟩ 

⟨𝐾|𝒪2|𝐿⟩ = ⟨𝑚𝑛|𝑝𝑞⟩ − ⟨𝑚𝑛|𝑞𝑝⟩ 
To use the rules, the two determinants must first be in maximum coincidence. Consider, for example, a matrix 
element between |Ψ1⟩ and |Ψ2⟩, where, 

|Ψ1⟩ = |𝑎𝑏𝑐𝑑⟩ 
|Ψ2⟩ = |𝑐𝑟𝑑𝑠⟩ 

At first glance, it might appear that the two determinants differ in all 4 columns. But, by interchanging 
columns of |Ψ2⟩ and keeping track of the sign, we have, 

|Ψ2⟩ = |𝑐𝑟𝑑𝑠⟩ = −|𝑐𝑟𝑠𝑑⟩ = |𝑠𝑟𝑐𝑑⟩ 
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Now, |Ψ1⟩ = |𝑎𝑏𝑐𝑑⟩ and |Ψ2⟩ = |𝑠𝑟𝑐𝑑⟩ are in maximum coincidence. They differ in two columns, and we 
can use the rules obtained in Case-3. We realize that, 

|𝐾⟩ ≡ |Ψ1⟩; |𝐿⟩ ≡ |Ψ2⟩;𝑚 ≡ 𝑎; 𝑛 ≡ 𝑏; 𝑝 ≡ 𝑠; 𝑞 ≡ 𝑟 
From the rules, it immediately follows that, 

⟨Ψ1|𝒪1|Ψ2⟩ = 0; ⟨Ψ1|𝒪2|Ψ2⟩ = ⟨𝑎𝑏|𝑠𝑟⟩ − ⟨𝑎𝑏|𝑟𝑠⟩ 
Using the rules, we can immediately write down the expression for the energy of a single determinant |𝐾⟩, 
that is, 

⟨𝐾|𝐻|𝐾⟩ = ⟨𝐾|𝒪1 + 𝒪2|𝐾⟩ = ∑⟨𝑚|ℎ|𝑚⟩

𝑁

𝑚=1

+
1

2
∑ ∑[⟨𝑚𝑛|𝑚𝑛⟩ − ⟨𝑚𝑛|𝑛𝑚⟩]

𝑁

𝑛=1

𝑁

𝑚=1

 

Matrix elements with the HF ground state for one-electron operators 

𝒪1 = ∑ℎ(𝑖)

𝑁

𝑖=1

 

Case − I:  ⟨Ψ0|𝒪1|Ψ0⟩ = ∑⟨𝑎|ℎ|𝑎⟩

𝑁

𝑎=1

 

Case − II:  ⟨Ψ0|𝒪1|Ψ𝑎
𝑟⟩ = ⟨𝑎|ℎ|𝑟⟩ 

Case − III:  ⟨Ψ0|𝒪1|Ψ𝑎𝑏
𝑟𝑠⟩ = 0 

Matrix elements with the HF ground state for two-electron operators 

𝒪2 = ∑∑𝑟𝑖𝑗
−1

𝑁

𝑗>𝑖

𝑁

𝑖=1

 

Case − I:  ⟨Ψ0|𝒪2|Ψ0⟩ =
1

2
∑∑[⟨𝑎𝑏|𝑎𝑏⟩ − ⟨𝑎𝑏|𝑏𝑎⟩]

𝑁

𝑏=1

𝑁

𝑎=1

 

Case − II:  ⟨Ψ0|𝒪2|Ψ𝑎
𝑟⟩ = ∑[⟨𝑎𝑏|𝑟𝑏⟩ − ⟨𝑎𝑏|𝑏𝑟⟩]

𝑁

𝑏=1

 

Case − III:  ⟨Ψ0|𝒪2|Ψ𝑎𝑏
𝑟𝑠⟩ = ⟨𝑎𝑏|𝑟𝑠⟩ − ⟨𝑎𝑏|𝑠𝑟⟩ 

∴ The HF ground state energy is 

𝐸0 = ∑⟨𝑎|ℎ|𝑎⟩

𝑁

𝑎=1

+
1

2
∑∑[⟨𝑎𝑏|𝑎𝑏⟩ − ⟨𝑎𝑏|𝑏𝑎⟩]

𝑁

𝑏=1

𝑁

𝑎=1

 

If |𝐾⟩ = |𝜒1𝜒2𝜒3⟩, let us evaluate the integral ⟨𝐾|𝐻|𝐾⟩, by using the rules for matrix elements. 
Now, 

⟨𝐾|𝐻|𝐾⟩ = ∑⟨𝑚|ℎ|𝑚⟩

𝑁

𝑚=1

+
1

2
∑ ∑[⟨𝑚𝑛|𝑚𝑛⟩ − ⟨𝑚𝑛|𝑛𝑚⟩]

𝑁

𝑛=1

𝑁

𝑚=1

 

               = ∑⟨𝑚|ℎ|𝑚⟩

𝑁

𝑚=1

+ ∑ ∑[⟨𝑚𝑛|𝑚𝑛⟩ − ⟨𝑚𝑛|𝑛𝑚⟩]

𝑁

𝑛>𝑚

𝑁

𝑚=1

 

∴ ⟨𝐾|𝐻|𝐾⟩ = ⟨1|ℎ|1⟩ + ⟨2|ℎ|2⟩ + ⟨3|ℎ|3⟩ + ⟨12|12⟩ − ⟨12|21⟩ + ⟨13|13⟩ − ⟨13|31⟩ 
+⟨23|23⟩ − ⟨23|32⟩ 

Rules for the matrix elements for 

𝒪1 = ∑ℎ(𝑖)

𝑁

𝑖=1

 

Case-I: |𝐾⟩ = |⋯𝜒𝑚𝜒𝑛⋯⟩ 

⟨𝐾|𝒪1|𝐾⟩ = ∑⟨𝑚|ℎ|𝑚⟩

𝑁

𝑚=1

 

Case-II: |𝐾⟩ = |⋯𝜒𝑚𝜒𝑛⋯⟩, |𝐿⟩ = |⋯𝜒𝑝𝜒𝑛⋯⟩ 

⟨𝐾|𝒪1|𝐿⟩ = ⟨𝑚|ℎ|𝑝⟩ 
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Case-III: |𝐾⟩ = |⋯𝜒𝑚𝜒𝑛⋯⟩, |𝐿⟩ = |⋯𝜒𝑝𝜒𝑞 ⋯⟩ 
⟨𝐾|𝒪1|𝐿⟩ = 0 

Rules for the matrix elements for 

𝒪2 = ∑∑𝑟𝑖𝑗
−1

𝑁

𝑗>𝑖

𝑁

𝑖=1

 

Case-I: |𝐾⟩ = |⋯𝜒𝑚𝜒𝑛⋯⟩ 

⟨𝐾|𝒪2|𝐾⟩ =
1

2
∑ ∑[⟨𝑚𝑛|𝑚𝑛⟩ − ⟨𝑚𝑛|𝑛𝑚⟩]

𝑁

𝑛=1

𝑁

𝑚=1

 

Case-II: |𝐾⟩ = |⋯𝜒𝑚𝜒𝑛⋯⟩, |𝐿⟩ = |⋯𝜒𝑝𝜒𝑛⋯⟩ 

⟨𝐾|𝒪2|𝐿⟩ = ∑[⟨𝑚𝑛|𝑝𝑛⟩ − ⟨𝑚𝑛|𝑛𝑝⟩]

𝑁

𝑛=1

 

Case-III: |𝐾⟩ = |⋯𝜒𝑚𝜒𝑛⋯⟩, |𝐿⟩ = |⋯𝜒𝑝𝜒𝑞 ⋯⟩ 

⟨𝐾|𝒪2|𝐿⟩ = ⟨𝑚𝑛|𝑝𝑞⟩ − ⟨𝑚𝑛|𝑞𝑝⟩ 
 
SECOND QUANTIZATION 
Antisymmetry principle: an axiom of QM quite apart from the Schrödinger equation. This principle is satisfied 
by the use of Slater determinants and linear combinations of such determinants for the wavefunctions. Can 
we satisfy the antisymmetry principle without invoking the Slater determinants? Second quantization: a 
theoretical idea in which the antisymmetry property of the wavefunction gets transferred onto the algebraic 
properties of certain operators. Second quantization introduces no new physics. It is an elegant way of 
treating many-electron systems. This approach shifts much of the emphasis from the 𝑁-electron 
wavefunction to the one- and two-electron integrals, ⟨𝑖|ℎ|𝑗⟩ and ⟨𝑖𝑗|𝑘𝑙⟩. Second quantization approach 
begins with the definitions of creation and annihilation operators. 
 
CREATION AND ANNIHILATION OPERATORS 

For a spin orbital 𝜒𝑖  we associate a creation operator, 𝑎𝑖
†. We define 𝑎𝑖

† by its action on an arbitrary SD, 
|𝜒𝑘 …𝜒𝑙⟩ as 

𝑎𝑖
†|𝜒𝑘 …𝜒𝑙⟩ = |𝜒𝑖𝜒𝑘 …𝜒𝑙⟩ 

∴ 𝑎𝑖
† creates an electron in the spin orbital 𝜒𝑖. The order in which two creation operators are applied to a 

determinant is crucial. Consider, 

𝑎𝑖
†𝑎𝑗

†|𝜒𝑘 …𝜒𝑙⟩ = 𝑎𝑖
†|𝜒𝑗𝜒𝑘 …𝜒𝑙⟩ = |𝜒𝑖𝜒𝑗𝜒𝑘 …𝜒𝑙⟩ 

On the other hand, 

𝑎𝑗
†𝑎𝑖

†|𝜒𝑘…𝜒𝑙⟩ = 𝑎𝑗
†|𝜒𝑖𝜒𝑘 …𝜒𝑙⟩ = |𝜒𝑗𝜒𝑖𝜒𝑘 …𝜒𝑙⟩ = −|𝜒𝑖𝜒𝑗𝜒𝑘…𝜒𝑙⟩ 

where we have used the antisymmetry property of the SDs. 

∴ (𝑎𝑖
†𝑎𝑗

† + 𝑎𝑗
†𝑎𝑖

†)|𝜒𝑘 …𝜒𝑙⟩ = 0 

∵ |𝜒𝑘 …𝜒𝑙⟩ is an arbitrary determinant, 

𝑎𝑖
†𝑎𝑗

† + 𝑎𝑗
†𝑎𝑖

† = 0 

so that, 

{𝑎𝑖
†, 𝑎𝑗

†} = 0 

where we have used the notation for the anticommutator of two operators 𝑎𝑖
† and 𝑎𝑗

†. Since 

𝑎𝑖
†𝑎𝑗

† = −𝑎𝑗
†𝑎𝑖

† 

we can interchange the order of two creation operators provided we change the sign. If  𝑖 = 𝑗, we have, 

𝑎𝑖
†𝑎𝑖

† = −𝑎𝑖
†𝑎𝑖

† = 0 
which states that we cannot create two electrons in the same spin orbital 𝜒𝑖  (Pauli exclusion principle). 

∴ 𝑎1
†𝑎1

†|𝜒2𝜒3⟩ = 𝑎1
†|𝜒1𝜒2𝜒3⟩ = |𝜒1𝜒1𝜒2𝜒3⟩ = 0 

In general, 
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𝑎𝑖
†|𝜒𝑘…𝜒𝑙⟩ = 0,  if 𝑖 ∈ {𝑘,… , 𝑙}, 

that is, we cannot create an electron in a spin orbital 𝜒𝑖  is there is one already there.  
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Let us now introduce the annihilation operator, 𝑎𝑖, which is the adjoint of the creation operator, 𝑎𝑖
†, that is, 

(𝑎𝑖
†)

†
= 𝑎𝑖. In analogy with 𝑎𝑖

†|𝜒𝑘 …𝜒𝑙⟩ = |𝜒𝑖𝜒𝑘 …𝜒𝑙⟩, 𝑎𝑖  is defined as 𝑎𝑖|𝜒𝑖𝜒𝑘 …𝜒𝑙⟩ = |𝜒𝑘 …𝜒𝑙⟩. So, 𝑎𝑖  

annihilates/destroys an electron in 𝜒𝑖. The annihilation operator can only act on a determinant if the spin 
orbital, which will disappear, is immediately to the left. If a spin orbital is not in the proper position, it must 
be placed there by interchanging the columns of the determinant. For example, 

𝑎𝑖|𝜒𝑘𝜒𝑙𝜒𝑖⟩ = −𝑎𝑖|𝜒𝑘𝜒𝑖𝜒𝑙⟩ = 𝑎𝑖|𝜒𝑖𝜒𝑘𝜒𝑙⟩ = |𝜒𝑘𝜒𝑙⟩ 
Why is the annihilation operator defined as the adjoint of the creation operator? Consider the determinant 

|𝐾⟩ = |𝜒𝑖𝜒𝑗⟩ 
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Clearly, 

|𝐾⟩ = 𝑎𝑖
†|𝜒𝑗⟩ 

The adjoint of |𝐾⟩ = 𝑎𝑖
†|𝜒𝑗⟩ is, 

⟨𝐾| = ⟨𝜒𝑗|(𝑎𝑖
†)

†
= ⟨𝜒𝑗|𝑎𝑖  

since, for an operator 𝒪, if 𝒪|𝑎⟩ = |𝑏⟩, then, ⟨𝑎|𝒪† = ⟨𝑏|. Multiplying ⟨𝐾| = ⟨𝜒𝑗|(𝑎𝑖
†)

†
= ⟨𝜒𝑗|𝑎𝑖  on the right 

by |𝐾⟩, we have, 

⟨𝐾|𝐾⟩ = ⟨𝜒𝑗|𝑎𝑖|𝐾⟩ 

Since, ⟨𝐾|𝐾⟩ = 1 = ⟨𝜒𝑗|𝜒𝑗⟩, our theory is consistent when 

𝑎𝑖|𝐾⟩ ≡ 𝑎𝑖|𝜒𝑖𝜒𝑗⟩ = |𝜒𝑗⟩ 

in agreement with the definition 𝑎𝑖|𝜒𝑖𝜒𝑘 …𝜒𝑙⟩ = |𝜒𝑘 …𝜒𝑙⟩ of the annihilation operator. ⟨𝐾| = ⟨𝜒𝑗|(𝑎𝑖
†)

†
=

⟨𝜒𝑗|𝑎𝑖 shows that 𝑎𝑖  acts like a creation operator if it operates on a determinant to the left. Similarly, 𝑎𝑖
† acts 

like an annihilation operator if it operates to the left. For example, the adjoint of 𝑎𝑖|𝐾⟩ ≡ 𝑎𝑖|𝜒𝑖𝜒𝑗⟩ = |𝜒𝑗⟩ is 

⟨𝐾|𝑎𝑖
† = ⟨𝜒𝑗|. To obtain the anti-commutation relation satisfied by annihilation operators we take the adjoint 

of  

𝑎𝑖
†𝑎𝑗

† + 𝑎𝑗
†𝑎𝑖

† = 0 = {𝑎𝑖
†, 𝑎𝑗

†}. 

We recall that, 
(𝒜ℬ)† = ℬ†𝒜†  

so that, 

𝑎𝑗𝑎𝑖 + 𝑎𝑖𝑎𝑗 = 0 = {𝑎𝑗, 𝑎𝑖}. 

Since, 
𝑎𝑖𝑎𝑗 = −𝑎𝑗𝑎𝑖  

we can interchange the order of two annihilation operators provided we change the sign. If 𝑖 = 𝑗, we have 
𝑎𝑖𝑎𝑖 = −𝑎𝑖𝑎𝑖 = 0 

which states that we cannot destroy an electron twice. A consequence of this is that we cannot remove an 
electron from a spin orbital 𝜒𝑖, if it is not already there, 

𝑎𝑖|𝜒𝑘 …𝜒𝑙⟩ = 0,  if 𝑖 ∉ {𝑘,… , 𝑙} 

How do we interchange creation and annihilation operators? Consider the operator 𝑎𝑖𝑎𝑖
† + 𝑎𝑖

†𝑎𝑖 acting on 
an arbitrary determinant acting on an arbitrary determinant, |𝜒𝑘 …𝜒𝑙⟩. If 𝜒𝑖  is not occupied in |𝜒𝑘 …𝜒𝑙⟩, then 

(𝑎𝑖𝑎𝑖
† + 𝑎𝑖

†𝑎𝑖)|𝜒𝑘 …𝜒𝑙⟩ = 𝑎𝑖𝑎𝑖
†|𝜒𝑘 …𝜒𝑙⟩ + 𝑎𝑖

†𝑎𝑖|𝜒𝑘 …𝜒𝑙⟩ = 𝑎𝑖𝑎𝑖
†|𝜒𝑘 …𝜒𝑙⟩ = 𝑎𝑖|𝜒𝑖𝜒𝑘 …𝜒𝑙⟩ 

∴ (𝑎𝑖𝑎𝑖
† + 𝑎𝑖

†𝑎𝑖)|𝜒𝑘 …𝜒𝑙⟩ = |𝜒𝑘 …𝜒𝑙⟩ 

However, if 𝜒𝑖  is occupied in |𝜒𝑘 …𝜒𝑙⟩, then 

(𝑎𝑖𝑎𝑖
† + 𝑎𝑖

†𝑎𝑖)|𝜒𝑘 …𝜒𝑖 …𝜒𝑙⟩ = 𝑎𝑖𝑎𝑖
†|𝜒𝑘 …𝜒𝑖 …𝜒𝑙⟩ + 𝑎𝑖

†𝑎𝑖|𝜒𝑘 …𝜒𝑖 …𝜒𝑙⟩ = 𝑎𝑖
†𝑎𝑖|𝜒𝑘 …𝜒𝑖 …𝜒𝑙⟩

= −𝑎𝑖
†𝑎𝑖|𝜒𝑖 …𝜒𝑘 …𝜒𝑙⟩ = −𝑎𝑖

†|…𝜒𝑘 …𝜒𝑙⟩ = −|𝜒𝑖 …𝜒𝑘 …𝜒𝑙⟩ 

∴ (𝑎𝑖𝑎𝑖
† + 𝑎𝑖

†𝑎𝑖)|𝜒𝑘 …𝜒𝑖 …𝜒𝑙⟩ = |𝜒𝑘 …𝜒𝑖 …𝜒𝑙⟩ 

Therefore, in both the cases,  

(𝑎𝑖𝑎𝑖
† + 𝑎𝑖

†𝑎𝑖)|𝜒𝑘 …𝜒𝑙⟩ = |𝜒𝑘 …𝜒𝑙⟩ (when 𝜒𝑖  is not occupied) and 

(𝑎𝑖𝑎𝑖
† + 𝑎𝑖

†𝑎𝑖)|𝜒𝑘 …𝜒𝑖 …𝜒𝑙⟩ = |𝜒𝑘 …𝜒𝑖 …𝜒𝑙⟩ (when 𝜒𝑖  is occupied), 

we recover the same determinant. 

∴ 𝑎𝑖𝑎𝑖
† + 𝑎𝑖

†𝑎𝑖 = 1 = {𝑎𝑖, 𝑎𝑖
†} 

Finally, we consider (𝑎𝑗
†𝑎𝑖 + 𝑎𝑖𝑎𝑗

†)|𝜒𝑘 …𝜒𝑙⟩, when 𝑖 ≠ 𝑗. (𝑎𝑖𝑎𝑗
† + 𝑎𝑗

†𝑎𝑖)|𝜒𝑘 …𝜒𝑙⟩ = 𝑎𝑗
†𝑎𝑖|𝜒𝑘 …𝜒𝑙⟩ +

𝑎𝑖𝑎𝑗
†|𝜒𝑘 …𝜒𝑙⟩ is non-zero only if 𝜒𝑖  appears and 𝜒𝑗  does not in |𝜒𝑘 …𝜒𝑙⟩. Otherwise, we obtain zero  

• either because 𝑎𝑗
† tries to create an electron that is already there,  

• or 𝑎𝑖  tries to destroy an electron that is not there. 
However, even when 𝑖 ∈ {𝑘, … , 𝑙} and 𝑗 ∉ {𝑘,… , 𝑙}, we obtain zero for the antisymmetry. 

(𝑎𝑖𝑎𝑗
† + 𝑎𝑗

†𝑎𝑖)|𝜒𝑘 …𝜒𝑖 …𝜒𝑙⟩ = −(𝑎𝑖𝑎𝑗
† + 𝑎𝑗

†𝑎𝑖)|𝜒𝑖 …𝜒𝑘 …𝜒𝑙⟩ 
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or,  (𝑎𝑖𝑎𝑗
† + 𝑎𝑗

†𝑎𝑖)|𝜒𝑘 …𝜒𝑖 …𝜒𝑙⟩ = −𝑎𝑖𝑎𝑗
†|𝜒𝑖 …𝜒𝑘 …𝜒𝑙⟩ − 𝑎𝑗

†𝑎𝑖|𝜒𝑖 …𝜒𝑘 …𝜒𝑙⟩ 

or,  (𝑎𝑖𝑎𝑗
† + 𝑎𝑗

†𝑎𝑖)|𝜒𝑘 …𝜒𝑖 …𝜒𝑙⟩ = −𝑎𝑖|𝜒𝑗𝜒𝑖 …𝜒𝑘 …𝜒𝑙⟩ − 𝑎𝑗
†|…𝜒𝑘 …𝜒𝑙⟩ 

Therefore, from, 

(𝑎𝑖𝑎𝑗
† + 𝑎𝑗

†𝑎𝑖)|𝜒𝑘 …𝜒𝑖 …𝜒𝑙⟩ = −𝑎𝑖|𝜒𝑗𝜒𝑖 …𝜒𝑘 …𝜒𝑙⟩ − 𝑎𝑗
†|…𝜒𝑘 …𝜒𝑙⟩ 

we have, 

(𝑎𝑖𝑎𝑗
† + 𝑎𝑗

†𝑎𝑖)|𝜒𝑘 …𝜒𝑖 …𝜒𝑙⟩ = 𝑎𝑖|𝜒𝑖𝜒𝑗 …𝜒𝑘 …𝜒𝑙⟩ − |𝜒𝑗…𝜒𝑘 …𝜒𝑙⟩ 

or,  (𝑎𝑖𝑎𝑗
† + 𝑎𝑗

†𝑎𝑖)|𝜒𝑘 …𝜒𝑖 …𝜒𝑙⟩ = |𝜒𝑗 …𝜒𝑘 …𝜒𝑙⟩ − |𝜒𝑗…𝜒𝑘 …𝜒𝑙⟩ = 0 

Thus, we have, 

𝑎𝑖𝑎𝑗
† + 𝑎𝑗

†𝑎𝑖 = 0 = {𝑎𝑖, 𝑎𝑗
†} 

Let us now combine 𝑎𝑖𝑎𝑖
† + 𝑎𝑖

†𝑎𝑖 = 1 = {𝑎𝑖, 𝑎𝑖
†} and 𝑎𝑖𝑎𝑗

† + 𝑎𝑗
†𝑎𝑖 = 0 = {𝑎𝑖, 𝑎𝑗

†} to yield 

𝑎𝑖𝑎𝑗
† + 𝑎𝑗

†𝑎𝑖 = 𝛿𝑖𝑗 = {𝑎𝑖, 𝑎𝑗
†} 
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We have derived three crucial anticommutation relationships of the creation-annihilation operators: 
(a) Between two creation operators: 

𝑎𝑖
†𝑎𝑗

† + 𝑎𝑗
†𝑎𝑖

† = 0 = {𝑎𝑖
†, 𝑎𝑗

†} 

(b) Between two annihilation operators: 

𝑎𝑗𝑎𝑖 + 𝑎𝑖𝑎𝑗 = 0 = {𝑎𝑗, 𝑎𝑖} 

(c) Between a creation and an annihilation operator: 

𝑎𝑖𝑎𝑗
† + 𝑎𝑗

†𝑎𝑖 = 𝛿𝑖𝑗 = {𝑎𝑖, 𝑎𝑗
†} 
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These three anticommutators contain all the properties of Slater determinants. To define a SD in the 
formalism of second quantization, we define a vacuum state,|⬚⟩. The vacuum state represents the state of 
a system that contains no electrons. The vacuum state,|⬚⟩ is normalized.  

⟨⬚|⬚⟩ = 1 
It has the property:  

𝑎𝑖|⬚⟩ = 0 = ⟨⬚|𝑎𝑖
† 

that is, as the vacuum state contains no electrons, we cannot remove an electron from it. We can construct 

any state of the system by applying a series of creation operators on |⬚⟩. For example, |𝜒𝑖⟩ = 𝑎𝑖
†|⬚⟩. In 

general,  

𝑎𝑖
†𝑎𝑘

†⋯𝑎𝑙
†|⬚⟩ = |𝜒𝑖𝜒𝑘⋯𝜒𝑙⟩ 

The relation,  

𝑎𝑖
†𝑎𝑘

†⋯𝑎𝑙
†|⬚⟩ = |𝜒𝑖𝜒𝑘⋯𝜒𝑙⟩ 

is the second-quantized representation of a Slater determinant (SD). Any result that can be obtained using 
the properties of determinants can also be proved using only the algebraic properties of creation and 
annihilation operators. Say we have the determinants, 

|𝐾⟩ = |𝜒𝑖𝜒𝑗⟩ = 𝑎𝑖
†𝑎𝑗

†|⬚⟩ 

|𝐿⟩ = |𝜒𝑘𝜒𝑙⟩ = 𝑎𝑘
†𝑎𝑙

†|⬚⟩ 
Ordinarily, we can evaluate the overlap between |𝐾⟩ and |𝐿⟩ by  

• expanding out the determinants,  
• integrating over the space and spin coordinates of the two electrons, and  
• using the orthonormality relation of spin orbitals. 

Let us evaluate the overlap by using the formalism of second quantization. Since the adjoint of |𝐾⟩ =

|𝜒𝑖𝜒𝑗⟩ = 𝑎𝑖
†𝑎𝑗

†|⬚⟩ is 

⟨𝐾| = ⟨⬚|(𝑎𝑖
†𝑎𝑗

†)
†
= ⟨⬚|𝑎𝑗𝑎𝑖 

we have  

⟨𝐾|𝐿⟩ = ⟨⬚|𝑎𝑗𝑎𝑖𝑎𝑘
†𝑎𝑙

†|⬚⟩ 

The general strategy for evaluating such matrix elements is to move, using the anticommutation relations, 
the annihilation operators to the right until they operate directly on the vacuum state. We begin with 𝑎𝑖, and 

note that 𝑎𝑖𝑎𝑘
† + 𝑎𝑘

†𝑎𝑖 = 𝛿𝑖𝑘 = {𝑎𝑖, 𝑎𝑘
†}, so that 𝑎𝑖𝑎𝑘

† = 𝛿𝑖𝑘 − 𝑎𝑘
†𝑎𝑖. Therefore, we have  

⟨𝐾|𝐿⟩ = ⟨⬚|𝑎𝑗𝑎𝑖𝑎𝑘
†𝑎𝑙

†|⬚⟩ = ⟨⬚|𝑎𝑗(𝛿𝑖𝑘 − 𝑎𝑘
†𝑎𝑖)𝑎𝑙

†|⬚⟩ 

∴ ⟨𝐾|𝐿⟩ = 𝛿𝑖𝑘⟨⬚|𝑎𝑗𝑎𝑙
†|⬚⟩ − ⟨⬚|𝑎𝑗𝑎𝑘

†𝑎𝑖𝑎𝑙
†|⬚⟩ 

To continue,  
• we move 𝑎𝑗 to the right in the first term, and 

• keep moving 𝑎𝑖  to the right in the second term. 

∴ ⟨𝐾|𝐿⟩ = 𝛿𝑖𝑘⟨⬚|(𝛿𝑗𝑙 − 𝑎𝑙
†𝑎𝑗)|⬚⟩ − ⟨⬚|𝑎𝑗𝑎𝑘

†(𝛿𝑖𝑙 − 𝑎𝑙
†𝑎𝑖)|⬚⟩ 

or, ⟨𝐾|𝐿⟩ = 𝛿𝑖𝑘𝛿𝑗𝑙⟨⬚|⬚⟩ − 𝛿𝑖𝑘⟨⬚|𝑎𝑙
†𝑎𝑗|⬚⟩ − 𝛿𝑖𝑙⟨⬚|𝑎𝑗𝑎𝑘

†|⬚⟩ + ⟨⬚|𝑎𝑗𝑎𝑘
†𝑎𝑙

†𝑎𝑖|⬚⟩ 

The second and fourth terms now have an annihilation operator acting on the vacuum and hence are zero. 

∴ ⟨𝐾|𝐿⟩ = 𝛿𝑖𝑘𝛿𝑗𝑙⟨⬚|⬚⟩ − 𝛿𝑖𝑙⟨⬚|𝑎𝑗𝑎𝑘
†|⬚⟩ 

Finally, we move 𝑎𝑗 to the right using the suitable anticommutator to get, 

⟨𝐾|𝐿⟩ = 𝛿𝑖𝑘𝛿𝑗𝑙⟨⬚|⬚⟩ − 𝛿𝑖𝑙⟨⬚|(𝛿𝑗𝑘 − 𝑎𝑘
†𝑎𝑗)|⬚⟩ 

or, ⟨𝐾|𝐿⟩ = 𝛿𝑖𝑘𝛿𝑗𝑙⟨⬚|⬚⟩ − 𝛿𝑖𝑙𝛿𝑗𝑘⟨⬚|⬚⟩ + 𝛿𝑖𝑙⟨⬚|𝑎𝑘
†𝑎𝑗|⬚⟩ 

The term ⟨⬚|𝑎𝑘
†𝑎𝑗|⬚⟩ = 0, since the annihilation operator acts on the vacuum. Since, ⟨⬚|⬚⟩ = 1, we have, 

⟨𝐾|𝐿⟩ = 𝛿𝑖𝑘𝛿𝑗𝑙 − 𝛿𝑖𝑙𝛿𝑗𝑘  

 
Second Quantized Operators and Their Matrix Elements 

• We can represent determinants by using creation and annihilation operators; these operators obey 
a set of anticommutation relations and vacuum state. 
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• We have found a representation of a many-electron wavefunction that satisfies the requirement of 
the antisymmetry principle, but which can be manipulated without any knowledge of the properties 
of determinants. 

To be able to develop the entire theory of many-electron systems without using determinants, we must 
express the many-particle operators, 𝒪1 and 𝒪2, in terms of creation and annihilation operators. 
In the first quantization, the one-electron operators are written as 

𝒪1 = ∑ℎ(𝑖)

𝑁

𝑖=1

 

where the summation runs over all the 𝑁 electrons in the system. Since each term in 𝒪1 involves a single 
electron, this operator gives a vanishing matrix element whenever the SDs differ in more than one pair of 
spin orbitals. The second quantization analogue of 𝒪1 therefore has the structure, 

𝒪1 = ∑⟨𝑖|ℎ|𝑗⟩

𝑖𝑗

𝑎𝑖
†𝑎𝑗 

since the excitation operators 𝑎𝑖
†𝑎𝑗 shift a single electron in a wavefunction. The summation is over all pairs 

of spin orbitals to secure the highest possible flexibility. 
In the first quantization, the two-electron operators are written as 

𝒪2 = ∑∑𝑟𝑖𝑗
−1

𝑁

𝑗>𝑖

𝑁

𝑖=1

=
1

2
∑∑𝑟𝑖𝑗

−1

𝑁

𝑗=1

𝑁

𝑖=1

 

where the summations run over all the 𝑁 electrons in the system. The operator 𝒪2 gives non-vanishing matrix 
elements between SDs  

• if the determinants contain at least two electrons, and  
• if they differ in the occupations of at most two pair of electrons.  

The second quantized representation of a two-electron operator therefore has the form 

𝒪2 =
1

2
∑⟨𝑖𝑗|𝑘𝑙⟩

𝑖𝑗𝑘𝑙

𝑎𝑖
†𝑎𝑗

†𝑎𝑙𝑎𝑘 

The annihilation operators appear to the right of the creation operators in order to ensure that 𝒪2 gives zero 
when it works on a wavefunction with less than two electrons. To demonstrate that the second quantization 
is equivalent to our previous development based on the SDs, we calculate the energy of the HF ground state 
|Ψ0⟩ = |𝜒1⋯𝜒𝑎𝜒𝑏⋯𝜒𝑁⟩ using the second quantization. For the sum of one-electron operators, we have, 

⟨Ψ0|𝒪1|Ψ0⟩ = ∑⟨𝑖|ℎ|𝑗⟩

𝑖𝑗

⟨Ψ0|𝑎𝑖
†𝑎𝑗|Ψ0⟩ 

Since both 𝑎𝑗 and 𝑎𝑖
† are trying to destroy an electron (𝑎𝑗 to the right, and 𝑎𝑖

† to the left), the indices 𝑖 and 𝑗 

must belong to the set {𝑎,  𝑏,  …} (the set of occupied orbitals). Therefore, we have, 

⟨Ψ0|𝒪1|Ψ0⟩ = ∑⟨𝑎|ℎ|𝑏⟩

𝑎𝑏

⟨Ψ0|𝑎𝑎
†𝑎𝑏|Ψ0⟩ 

Now, using the relation, 𝑎𝑎
†𝑎𝑏 = 𝛿𝑎𝑏 − 𝑎𝑏𝑎𝑎

†,  to move 𝑎𝑎
† to the right, we have, 

⟨Ψ0|𝑎𝑎
†𝑎𝑏|Ψ0⟩ = ⟨Ψ0|𝛿𝑎𝑏 − 𝑎𝑏𝑎𝑎

†|Ψ0⟩ = 𝛿𝑎𝑏⟨Ψ0|Ψ0⟩ − ⟨Ψ0|𝑎𝑏𝑎𝑎
†|Ψ0⟩ 

The term ⟨Ψ0|𝑎𝑏𝑎𝑎
†|Ψ0⟩ is zero since 𝑎𝑎

† attempts to create an electron in 𝜒𝑎, which is already occupied in 
|Ψ0⟩. Since, ⟨Ψ0|Ψ0⟩ = 1, we finally have, 

⟨Ψ0|𝒪1|Ψ0⟩ = ∑⟨𝑎|ℎ|𝑏⟩

𝑎𝑏

⟨Ψ0|𝑎𝑎
†𝑎𝑏|Ψ0⟩ = ∑⟨𝑎|ℎ|𝑏⟩

𝑎𝑏

𝛿𝑎𝑏 = ∑⟨𝑎|ℎ|𝑎⟩

𝑎

 

This is in agreement with our previous result. 
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For the sum of two-electron operators, we have, 

⟨Ψ0|𝒪2|Ψ0⟩ =
1

2
∑⟨𝑖𝑗|𝑘𝑙⟩

𝑖𝑗𝑘𝑙

⟨Ψ0|𝑎𝑖
†𝑎𝑗

†𝑎𝑙𝑎𝑘|Ψ0⟩ 

Since both 𝑎𝑙  and 𝑎𝑘, and 𝑎𝑖
† and 𝑎𝑗

† are trying to destroy two electrons (𝑎𝑙  and 𝑎𝑘 to the right, and𝑎𝑖
† and 

𝑎𝑗
† to the left), the indices 𝑖,  𝑗,  𝑘,  𝑙 must belong to the set {𝑎,  𝑏,  …} (the set of occupied orbitals). 

Thus, we have, 

⟨Ψ0|𝒪2|Ψ0⟩ =
1

2
∑ ⟨𝑎𝑏|𝑐𝑑⟩

𝑎𝑏𝑐𝑑

⟨Ψ0|𝑎𝑎
†𝑎𝑏

†𝑎𝑑𝑎𝑐|Ψ0⟩ 

Thus, our strategy, as before, is to move 𝑎𝑎
† and 𝑎𝑏

† to the right in ⟨Ψ0|𝑎𝑎
†𝑎𝑏

†𝑎𝑑𝑎𝑐|Ψ0⟩ until they operate on 
|Ψ0⟩. 

∴ ⟨Ψ0|𝑎𝑎
†𝑎𝑏

†𝑎𝑑𝑎𝑐|Ψ0⟩ = ⟨Ψ0|𝑎𝑎
†(𝛿𝑏𝑑 − 𝑎𝑑𝑎𝑏

†)𝑎𝑐|Ψ0⟩ 

or, ⟨Ψ0|𝑎𝑎
†𝑎𝑏

†𝑎𝑑𝑎𝑐|Ψ0⟩ = 𝛿𝑏𝑑⟨Ψ0|𝑎𝑎
†𝑎𝑐|Ψ0⟩ − ⟨Ψ0|𝑎𝑎

†𝑎𝑑𝑎𝑏
†𝑎𝑐|Ψ0⟩ 

or, ⟨Ψ0|𝑎𝑎
†𝑎𝑏

†𝑎𝑑𝑎𝑐|Ψ0⟩ = 𝛿𝑏𝑑⟨Ψ0|𝛿𝑎𝑐 − 𝑎𝑐𝑎𝑎
†|Ψ0⟩ − ⟨Ψ0|𝑎𝑎

†𝑎𝑑(𝛿𝑏𝑐 − 𝑎𝑐𝑎𝑏
†)|Ψ0⟩ 

or, ⟨Ψ0|𝑎𝑎
†𝑎𝑏

†𝑎𝑑𝑎𝑐|Ψ0⟩ = 𝛿𝑏𝑑𝛿𝑎𝑐⟨Ψ0|Ψ0⟩ − 𝛿𝑏𝑑⟨Ψ0|𝑎𝑐𝑎𝑎
†|Ψ0⟩ − ⟨Ψ0|𝑎𝑎

†𝑎𝑑(𝛿𝑏𝑐 − 𝑎𝑐𝑎𝑏
†)|Ψ0⟩ 

The term, ⟨Ψ0|𝑎𝑐𝑎𝑎
†|Ψ0⟩ = 0, since 𝑎𝑎

† acts on an already occupied 𝜒𝑎 in |Ψ0⟩. Also, since, ⟨Ψ0|Ψ0⟩ = 1, we 
have, 

⟨Ψ0|𝑎𝑎
†𝑎𝑏

†𝑎𝑑𝑎𝑐|Ψ0⟩ = 𝛿𝑏𝑑𝛿𝑎𝑐 − ⟨Ψ0|𝑎𝑎
†𝑎𝑑(𝛿𝑏𝑐 − 𝑎𝑐𝑎𝑏

†)|Ψ0⟩ 

or, ⟨Ψ0|𝑎𝑎
†𝑎𝑏

†𝑎𝑑𝑎𝑐|Ψ0⟩ = 𝛿𝑏𝑑𝛿𝑎𝑐 − 𝛿𝑏𝑐⟨Ψ0|𝑎𝑎
†𝑎𝑑|Ψ0⟩ + ⟨Ψ0|𝑎𝑎

†𝑎𝑑𝑎𝑐𝑎𝑏
†|Ψ0⟩ 

The term, ⟨Ψ0|𝑎𝑎
†𝑎𝑑𝑎𝑐𝑎𝑏

†|Ψ0⟩ = 0, since 𝑎𝑏
† acts on an already occupied 𝜒𝑏 in |Ψ0⟩. 

∴ ⟨Ψ0|𝑎𝑎
†𝑎𝑏

†𝑎𝑑𝑎𝑐|Ψ0⟩ = 𝛿𝑏𝑑𝛿𝑎𝑐 − 𝛿𝑏𝑐⟨Ψ0|𝑎𝑎
†𝑎𝑑|Ψ0⟩ = 𝛿𝑏𝑑𝛿𝑎𝑐 − 𝛿𝑏𝑐⟨Ψ0|𝛿𝑎𝑑 − 𝑎𝑑𝑎𝑎

†|Ψ0⟩ 

or, ⟨Ψ0|𝑎𝑎
†𝑎𝑏

†𝑎𝑑𝑎𝑐|Ψ0⟩ = 𝛿𝑏𝑑𝛿𝑎𝑐 − 𝛿𝑏𝑐𝛿𝑎𝑑⟨Ψ0|Ψ0⟩ + 𝛿𝑏𝑐⟨Ψ0|𝑎𝑑𝑎𝑎
†|Ψ0⟩ 

The term, ⟨Ψ0|𝑎𝑑𝑎𝑎
†|Ψ0⟩ = 0, since 𝑎𝑎

† acts on an already occupied 𝜒𝑎 in |Ψ0⟩. Also, since, ⟨Ψ0|Ψ0⟩ = 1, we 
have, 

⟨Ψ0|𝑎𝑎
†𝑎𝑏

†𝑎𝑑𝑎𝑐|Ψ0⟩ = 𝛿𝑏𝑑𝛿𝑎𝑐 − 𝛿𝑏𝑐𝛿𝑎𝑑 
Thus, 

⟨Ψ0|𝒪2|Ψ0⟩ =
1

2
∑ ⟨𝑎𝑏|𝑐𝑑⟩

𝑎𝑏𝑐𝑑

⟨Ψ0|𝑎𝑎
†𝑎𝑏

†𝑎𝑑𝑎𝑐|Ψ0⟩ =
1

2
∑ ⟨𝑎𝑏|𝑐𝑑⟩

𝑎𝑏𝑐𝑑

[𝛿𝑏𝑑𝛿𝑎𝑐 − 𝛿𝑏𝑐𝛿𝑎𝑑] 
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that is, we have two terms. Hence, from, 

⟨Ψ0|𝒪2|Ψ0⟩ =
1

2
∑ ⟨𝑎𝑏|𝑐𝑑⟩

𝑎𝑏𝑐𝑑

[𝛿𝑏𝑑𝛿𝑎𝑐 − 𝛿𝑏𝑐𝛿𝑎𝑑] 

we write, 

⟨Ψ0|𝒪2|Ψ0⟩ =
1

2
∑ ⟨𝑎𝑏|𝑐𝑑⟩

𝑎𝑏𝑐𝑑

𝛿𝑏𝑑𝛿𝑎𝑐 −
1

2
∑ ⟨𝑎𝑏|𝑐𝑑⟩

𝑎𝑏𝑐𝑑

𝛿𝑏𝑐𝛿𝑎𝑑 

We set 𝑐 = 𝑎 and 𝑑 = 𝑏 in the first term to get ⟨𝑎𝑏|𝑎𝑏⟩. We set 𝑐 = 𝑏 and 𝑑 = 𝑎 in the second term to get 
⟨𝑎𝑏|𝑏𝑎⟩. 

∴ ⟨Ψ0|𝒪2|Ψ0⟩ =
1

2
∑⟨𝑎𝑏|𝑎𝑏⟩

𝑎𝑏

−
1

2
∑⟨𝑎𝑏|𝑏𝑎⟩

𝑎𝑏

=
1

2
∑[⟨𝑎𝑏|𝑎𝑏⟩ − ⟨𝑎𝑏|𝑏𝑎⟩]

𝑎𝑏

 

This too is in agreement with our previous result. 

∴ 𝐸0 = ⟨Ψ0|𝐻|Ψ0⟩ = ∑⟨𝑎|ℎ|𝑎⟩

𝑎

+
1

2
∑[⟨𝑎𝑏|𝑎𝑏⟩ − ⟨𝑎𝑏|𝑏𝑎⟩]

𝑎𝑏
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